
Embedded Systems Programming - PA8001
http://goo.gl/YdEcZU

Lecture 2

Mohammad Mousavi
m.r.mousavi@hh.se

Center for Research on Embedded Systems

School of Information Science, Computer and Electrical Engineering

The preprocessor

Source manipulation before compilation

Macro expansion

Textually replace definitions.

File insertion
Include files as if you had written the code in your files.

Instructions to the compiler

For example not to compile certain parts of the program.

The preprocessor

Source manipulation before compilation

Macro expansion

Textually replace definitions.

File insertion
Include files as if you had written the code in your files.

Instructions to the compiler

For example not to compile certain parts of the program.

The preprocessor

Source manipulation before compilation

Macro expansion

Textually replace definitions.

File insertion
Include files as if you had written the code in your files.

Instructions to the compiler

For example not to compile certain parts of the program.

The preprocessor

Source manipulation before compilation

Macro expansion

Textually replace definitions.

File insertion
Include files as if you had written the code in your files.

Instructions to the compiler

For example not to compile certain parts of the program.

Preprocessing: macros

The program . . .

#define SIZE 5

#define init(v) x=v;y=v;z=v

main(){

int x,y,z;

init(SIZE);

}

becomes

main(){

int x,y,z;

x=5;y=5;z=5;

}

before compiling.

Preprocessing: macros

The program . . .

#define SIZE 5

#define init(v) x=v;y=v;z=v

main(){

int x,y,z;

init(SIZE);

}

becomes

main(){

int x,y,z;

x=5;y=5;z=5;

}

before compiling.

Preprocessing: including files

Larger programs organized in files
Separate interfaces and implementations in header and impl.
Preprocessor instructions to include header files.

typedef struct {int x;int y;} Pt;

#define initPoint(a,b) { a, b }

double distanceO (Pt *p1);

#include "point.h"

#include <math.h>

double distanceO (Pt *p1){

return sqrt(p1->x*p1->x + p1->y*p1->y);

}

point.h

point.c

Preprocessing: including files

Larger programs organized in files
Separate interfaces and implementations in header and impl.
Preprocessor instructions to include header files.

typedef struct {int x;int y;} Pt;

#define initPoint(a,b) { a, b }

double distanceO (Pt *p1);

#include "point.h"

#include <math.h>

double distanceO (Pt *p1){

return sqrt(p1->x*p1->x + p1->y*p1->y);

}

point.h

point.c

Preprocessing: including files

Larger programs organized in files
Separate interfaces and implementations in header and impl.
Preprocessor instructions to include header files.

typedef struct {int x;int y;} Pt;

#define initPoint(a,b) { a, b }

double distanceO (Pt *p1);

#include "point.h"

#include <math.h>

double distanceO (Pt *p1){

return sqrt(p1->x*p1->x + p1->y*p1->y);

}

point.h

point.c

Preprocessing: including files

Larger programs organized in files
Separate interfaces and implementations in header and impl.
Preprocessor instructions to include header files.

typedef struct {int x;int y;} Pt;

#define initPoint(a,b) { a, b }

double distanceO (Pt *p1);

#include "point.h"

#include <math.h>

double distanceO (Pt *p1){

return sqrt(p1->x*p1->x + p1->y*p1->y);

}

point.h

point.c

Preprocessing: including files

Programs can now use points as follows

The program . . .

#include "point.h"

#include <stdio.h>
main(){

Pt p = initPoint(3,4);

printf("%f\n",

distanceO(&p));

}

becomes

typedef struct {int x;int y;} Pt;

double distanceO (Pt *p1);

main(){

Pt p = { 3, 4 };

printf("%f\n",distanceO(&p));

}

after preprocessor (I do not show the
expansion of stdio.h!)

Preprocessing: including files

Programs can now use points as follows

The program . . .

#include "point.h"

#include <stdio.h>
main(){

Pt p = initPoint(3,4);

printf("%f\n",

distanceO(&p));

}

becomes

typedef struct {int x;int y;} Pt;

double distanceO (Pt *p1);

main(){

Pt p = { 3, 4 };

printf("%f\n",distanceO(&p));

}

after preprocessor (I do not show the
expansion of stdio.h!)

Preprocessing: including files

Programs can now use points as follows

The program . . .

#include "point.h"

#include <stdio.h>
main(){

Pt p = initPoint(3,4);

printf("%f\n",

distanceO(&p));

}

becomes

typedef struct {int x;int y;} Pt;

double distanceO (Pt *p1);

main(){

Pt p = { 3, 4 };

printf("%f\n",distanceO(&p));

}

after preprocessor (I do not show the
expansion of stdio.h!)

Compiling

Separate compilation

Even without a main, an object file can be generated

gcc -c point.c

will generate point.o, to be linked to form an executable.

Compilation

When compiling main program, provide the object files:

gcc usepoints.c point.o

Compiling

Separate compilation

Even without a main, an object file can be generated

gcc -c point.c

will generate point.o, to be linked to form an executable.

Compilation

When compiling main program, provide the object files:

gcc usepoints.c point.o

Preprocessing: instructions to the compiler

Compiling di↵erent versions of programs (for di↵erent platforms or
including debugging printouts)

The program . . .

#include "debug.h"

#include <stdio.h>

main(){

#ifdef DEBUG

printf("in debug mode");

#endif

printf("what has to

be done ...");

}

Two programs, depending on the
content of debug.h

Preprocessing: instructions to the compiler

Compiling di↵erent versions of programs (for di↵erent platforms or
including debugging printouts)

The program . . .

#include "debug.h"

#include <stdio.h>

main(){

#ifdef DEBUG

printf("in debug mode");

#endif

printf("what has to

be done ...");

}

Two programs, depending on the
content of debug.h

Preprocessing: instructions to the compiler

Compiling di↵erent versions of programs (for di↵erent platforms or
including debugging printouts)

The program . . .

#include "debug.h"

#include <stdio.h>

main(){

#ifdef DEBUG

printf("in debug mode");

#endif

printf("what has to

be done ...");

}

Two programs, depending on the
content of debug.h

Scientific experiment

Specify first:

I The circumstances of the experiment
(e.g., temperature, substances,
amounts): hypotheses,

I The expected outcomes of the
experiment (e.g., temperature, color,
substances): theses,

I The way to analyze the outcomes
(e.g., repetitions, varying parameters,
threats to validity): analyses

Programming as a scientific experiment

Before you start coding, specify first:

I The circumstances of the experiment:
pre-condition,

I The expected outcomes of the
experiment: post-condition,
properties,

I The way to analyze the outcomes:
test-cases and invariants

Starting point: Lab0

I Specify pre- and post-condition and tests as comments.

I Implement the test-cases manually in the main function,
surrounded by the TEST preprocessor,

I Run them every time you run in the test mode

Note: this is mandatory for Lab0!

Problems

I Mixing the functional code and the test code

I Unstructured tests

I Di�culties in finding the failures, their causes: di�culties in
debugging

Solution: Attend the lecture next week!

Use a unit testing framework: CUnit.

Mandatory for Lab1.

Problems

I Mixing the functional code and the test code

I Unstructured tests

I Di�culties in finding the failures, their causes: di�culties in
debugging

Solution: Attend the lecture next week!

Use a unit testing framework: CUnit.

Mandatory for Lab1.

The naked computer

CPU

 Port RAM Port

write

read

read

writ
e

Whenever the CPUfinds a write instruction
Whenever the CPU

finds a read

instruction

Whenever th
e user

types something Every ?
seconds

The naked computer

How to read from and write to IO ports (synchronization to be
discussed later on)

CPU

 Port
Port

re
a
d

w
rit

e

Whenever the CPUfinds a write instruction

Whenever the CPU

finds a read

instruction

IO hardware

Access via a set of registers, both to control the device operation
and for data transfer; 2 general architecture:

Memory mapped

Some addresses reserved for
device registers; typically with
names defined in a
platform-specific header file.

Separate bus

Di↵erent assembler instructions
for memory access and for device
registers

IO hardware

Access via a set of registers, both to control the device operation
and for data transfer; 2 general architecture:

Memory mapped

Some addresses reserved for
device registers; typically with
names defined in a
platform-specific header file.

Separate bus

Di↵erent assembler instructions
for memory access and for device
registers

IO hardware

Access via a set of registers, both to control the device operation
and for data transfer; 2 general architecture:

Memory mapped

Some addresses reserved for
device registers; typically with
names defined in a
platform-specific header file.

Separate bus

Di↵erent assembler instructions
for memory access and for device
registers

Memory mapped – things to think about

The documentation of a
microprocessor provides the
addresses corresponding to ports.
Addresses can be used as
pointers. The type of the pointers
depends on the size of the port.

char * port1; // 8 bits

int * port2; // 16 bits

Use unsigned to avoid confusions
with signed values!

Reading and writing is done as
with ordinary variables

*port1 // read

*port1 = value; // write

Would you do this in a program?

*port = x; x = *port;

Yes if it is IO! The compiler
should not optimize this away:

volatile int * port;

Memory mapped – things to think about

The documentation of a
microprocessor provides the
addresses corresponding to ports.
Addresses can be used as
pointers. The type of the pointers
depends on the size of the port.

char * port1; // 8 bits

int * port2; // 16 bits

Use unsigned to avoid confusions
with signed values!

Reading and writing is done as
with ordinary variables

*port1 // read

*port1 = value; // write

Would you do this in a program?

*port = x; x = *port;

Yes if it is IO! The compiler
should not optimize this away:

volatile int * port;

Memory mapped – things to think about

The documentation of a
microprocessor provides the
addresses corresponding to ports.
Addresses can be used as
pointers. The type of the pointers
depends on the size of the port.

char * port1; // 8 bits

int * port2; // 16 bits

Use unsigned to avoid confusions
with signed values!

Reading and writing is done as
with ordinary variables

*port1 // read

*port1 = value; // write

Would you do this in a program?

*port = x; x = *port;

Yes if it is IO! The compiler
should not optimize this away:

volatile int * port;

Memory mapped – things to think about

The documentation of a
microprocessor provides the
addresses corresponding to ports.
Addresses can be used as
pointers. The type of the pointers
depends on the size of the port.

char * port1; // 8 bits

int * port2; // 16 bits

Use unsigned to avoid confusions
with signed values!

Reading and writing is done as
with ordinary variables

*port1 // read

*port1 = value; // write

Would you do this in a program?

*port = x; x = *port;

Yes if it is IO! The compiler
should not optimize this away:

volatile int * port;

Memory mapped – things to think about

The documentation of a
microprocessor provides the
addresses corresponding to ports.
Addresses can be used as
pointers. The type of the pointers
depends on the size of the port.

char * port1; // 8 bits

int * port2; // 16 bits

Use unsigned to avoid confusions
with signed values!

Reading and writing is done as
with ordinary variables

*port1 // read

*port1 = value; // write

Would you do this in a program?

*port = x; x = *port;

Yes if it is IO! The compiler
should not optimize this away:

volatile int * port;

Memory Mapped – more things to think about!

Addresses and ports

Two registers might be mapped to the same address: one
supposed to be read from (like checking device status) and another
to write to (like giving commands to a device).

example

#define IS_READY (1 << 5)

#define CONVERT (1 << 5)

#define STATUS_REG *((char*)0x34c)

#define CMD_REG *((char*)0x34c)

if (STATUS_REG & IS_READY) {CMD_REG = CONVERT;}

Potential problem

CMD REG = CMD REG | CONVERT;

Memory Mapped – more things to think about!

Addresses and ports

Two registers might be mapped to the same address: one
supposed to be read from (like checking device status) and another
to write to (like giving commands to a device).

example

#define IS_READY (1 << 5)

#define CONVERT (1 << 5)

#define STATUS_REG *((char*)0x34c)

#define CMD_REG *((char*)0x34c)

if (STATUS_REG & IS_READY) {CMD_REG = CONVERT;}

Potential problem

CMD REG = CMD REG | CONVERT;

Memory Mapped – more things to think about!

Addresses and ports

Two registers might be mapped to the same address: one
supposed to be read from (like checking device status) and another
to write to (like giving commands to a device).

example

#define IS_READY (1 << 5)

#define CONVERT (1 << 5)

#define STATUS_REG *((char*)0x34c)

#define CMD_REG *((char*)0x34c)

if (STATUS_REG & IS_READY) {CMD_REG = CONVERT;}

Potential problem

CMD REG = CMD REG | CONVERT;

Shadowing

These registers are better used via a shadow variable (another
address! instead of just a def!)

example

#define CONVERT (1<<5)

#define CMD_REG *((char *)0x34c)

char cmd_shadow;

...

cmd_shadow = cmd_shadow | CONVERT;

CMD_REG = cmd_shadow;

Notice
All changes to CMD REG should be reflected in cmd shadow!

Shadowing

These registers are better used via a shadow variable (another
address! instead of just a def!)

example

#define CONVERT (1<<5)

#define CMD_REG *((char *)0x34c)

char cmd_shadow;

...

cmd_shadow = cmd_shadow | CONVERT;

CMD_REG = cmd_shadow;

Notice
All changes to CMD REG should be reflected in cmd shadow!

Shadowing

These registers are better used via a shadow variable (another
address! instead of just a def!)

example

#define CONVERT (1<<5)

#define CMD_REG *((char *)0x34c)

char cmd_shadow;

...

cmd_shadow = cmd_shadow | CONVERT;

CMD_REG = cmd_shadow;

Notice
All changes to CMD REG should be reflected in cmd shadow!

Misc

Single write

It is not always needed to read the value of the port when doing a
modification. In some cases you know exactly what value should
be written to the port.

#define CTRL (1<<3)

#define SIZE1 (1<<4)

#define SIZE2 (2<<4)

#define FLAG (1<<6)

CMD_REG = FLAG | SIZE2 | CTRL;

Separate I/O Bus

The port registers are accessed via special assembler instructions,
usually made available to a C program as preprocessor macros.

QNX real-time OS
Macros like in8, out8, in16, out16 that are used as in

unsigned char val = in8(0x30d);

out32(0xf4,expr);

As you see, they cannot be used as ordinary variables!

I/O Synchronisation

CPU

 Port RAM Port

write

read

read

writ
e

Whenever the CPUfinds a write instruction
Whenever the CPU

finds a read

instruction

Whenever th
e user

types something Every ?
seconds

How does the software
become aware of
changes in the key
status?

2 models

I interrupt driven
(more on this later
in the course)

I status driven (today
and lab1)

Busy Waiting

In the status driven model the CPU polls the status registers until
a change occurs

Example

int old = KEY_STATUS_REG;

int val = old;

while(old==val){

val = KEY_STATUS_REG;

}

On leaving the loop the status has changed!

The CPU is busy but is doing
nothing useful!

The CPU has no control over
when to exit the loop! What if
KEY STATUS REG were an ordinary
variable?

Busy Waiting

In the status driven model the CPU polls the status registers until
a change occurs

Example

int old = KEY_STATUS_REG;

int val = old;

while(old==val){

val = KEY_STATUS_REG;

}

On leaving the loop the status has changed!

The CPU is busy but is doing
nothing useful!

The CPU has no control over
when to exit the loop! What if
KEY STATUS REG were an ordinary
variable?

Busy Waiting

In the status driven model the CPU polls the status registers until
a change occurs

Example

int old = KEY_STATUS_REG;

int val = old;

while(old==val){

val = KEY_STATUS_REG;

}

On leaving the loop the status has changed!

The CPU is busy but is doing
nothing useful!

The CPU has no control over
when to exit the loop! What if
KEY STATUS REG were an ordinary
variable?

Busy Waiting

In the status driven model the CPU polls the status registers until
a change occurs

Example

int old = KEY_STATUS_REG;

int val = old;

while(old==val){

val = KEY_STATUS_REG;

}

On leaving the loop the status has changed!

The CPU is busy but is doing
nothing useful!

The CPU has no control over
when to exit the loop! What if
KEY STATUS REG were an ordinary
variable?

Busy waiting

Why is it so appealing?

It can be used to define functions that make input look like reading
variables (reading from memory!)

char getchar(){

while(KEY_STATUS_REG & PRESSED);

while(!(KEY_STATUS_REG & PRESSED));

return KEY_VALUE_REG;

}

A simple embedded system

Follow (track) an object using sonar echoes. Control parameters
are sent over wireless. The servo controls wheels.

data signals

Servo

Radio

packets

Input
Output

Input

Object

Distance

Sonar

Params

Controller

Decoder

Control

The view from the processor

Servo output portSensor input port

read write

read

Radio input port

Program

The program

We will go through a series of
attempts to organize the program
leading to the need for threads.

Next lecture
We discuss new problems that
arise because of programming
with threads.

Next lectures
Implementing threads.

The program: busy waiting input

int sonar_read(){

while(SONAR_STATUS & READY == 0);

return SONAR_DATA;

}

void radio_read(struct Packet *pkt){

while(RADIO_STATUS & READY == 0);

pkt->v1 = RADIO_DATA1;

...

pkt->vn = RADIO_DATAn;

}

We can define functions.
that create an illusion to
the rest of the program!

We have assumed input
ports that automatically
reset status when data is
read.

The program: busy waiting input

int sonar_read(){

while(SONAR_STATUS & READY == 0);

return SONAR_DATA;

}

void radio_read(struct Packet *pkt){

while(RADIO_STATUS & READY == 0);

pkt->v1 = RADIO_DATA1;

...

pkt->vn = RADIO_DATAn;

}

We can define functions.
that create an illusion to
the rest of the program!

We have assumed input
ports that automatically
reset status when data is
read.

The program: busy waiting input

int sonar_read(){

while(SONAR_STATUS & READY == 0);

return SONAR_DATA;

}

void radio_read(struct Packet *pkt){

while(RADIO_STATUS & READY == 0);

pkt->v1 = RADIO_DATA1;

...

pkt->vn = RADIO_DATAn;

}

We can define functions.
that create an illusion to
the rest of the program!

We have assumed input
ports that automatically
reset status when data is
read.

The program: busy waiting input

int sonar_read(){

while(SONAR_STATUS & READY == 0);

return SONAR_DATA;

}

void radio_read(struct Packet *pkt){

while(RADIO_STATUS & READY == 0);

pkt->v1 = RADIO_DATA1;

...

pkt->vn = RADIO_DATAn;

}

We can define functions.
that create an illusion to
the rest of the program!

We have assumed input
ports that automatically
reset status when data is
read.

The program: output

void servo_write(int sig){

SERVO_DATA = sig;

}

The program: algorithms

Control

void control(int dist, int *sig, struct Params *p);

Calculates the servo signal.

Decode

void decode(struct Packet *pkt, struct Params *p)

Decodes a packet and calculates new control parameters

The program: algorithms

Control

void control(int dist, int *sig, struct Params *p);

Calculates the servo signal.

Decode

void decode(struct Packet *pkt, struct Params *p)

Decodes a packet and calculates new control parameters

The program: algorithms

Control

void control(int dist, int *sig, struct Params *p);

Calculates the servo signal.

Decode

void decode(struct Packet *pkt, struct Params *p)

Decodes a packet and calculates new control parameters

The program: a first attempt

main(){

struct Params params;

struct Packet packet;

int dist, signal;

while(1){

dist = sonar_read();

control(dist, &signal, ¶ms);

servo_write(signal);

radio_read(&packet);

decode(&packet,¶ms);

}

}

Problems?

radio

echoes
sonar

packets

We do not know what port will have new data next! The sonar
and the radio generate events that are unrelated to each other!

Our program will ignore all events of one kind that happen while
busy waiting for the other event!

Problems?

radio

echoes
sonar

packets

We do not know what port will have new data next! The sonar
and the radio generate events that are unrelated to each other!

Our program will ignore all events of one kind that happen while
busy waiting for the other event!

Problems?

radio

echoes
sonar

packets

We do not know what port will have new data next! The sonar
and the radio generate events that are unrelated to each other!

Our program will ignore all events of one kind that happen while
busy waiting for the other event!

The problem explained

RAM and files vs. external input

I Data is already in place (. . . radio packets are not!)

I Even if there might be reasons for waiting, like for the disk
head moving to point to the right sector, contents does not
have to be created!

I They produce data only because they are asked to (. . . remote
transmitters act on their own!)

The illusion that input is like reading from memory while blocking
waiting for data requires that we choose the source of input before
blocking!

The problem explained

RAM and files vs. external input

I Data is already in place (. . . radio packets are not!)

I Even if there might be reasons for waiting, like for the disk
head moving to point to the right sector, contents does not
have to be created!

I They produce data only because they are asked to (. . . remote
transmitters act on their own!)

The illusion that input is like reading from memory while blocking
waiting for data requires that we choose the source of input before
blocking!

The problem explained

RAM and files vs. external input

I Data is already in place (. . . radio packets are not!)

I Even if there might be reasons for waiting, like for the disk
head moving to point to the right sector, contents does not
have to be created!

I They produce data only because they are asked to (. . . remote
transmitters act on their own!)

The illusion that input is like reading from memory while blocking
waiting for data requires that we choose the source of input before
blocking!

The problem explained

RAM and files vs. external input

I Data is already in place (. . . radio packets are not!)

I Even if there might be reasons for waiting, like for the disk
head moving to point to the right sector, contents does not
have to be created!

I They produce data only because they are asked to (. . . remote
transmitters act on their own!)

The illusion that input is like reading from memory while blocking
waiting for data requires that we choose the source of input before
blocking!

The problem explained

RAM and files vs. external input

I Data is already in place (. . . radio packets are not!)

I Even if there might be reasons for waiting, like for the disk
head moving to point to the right sector, contents does not
have to be created!

I They produce data only because they are asked to (. . . remote
transmitters act on their own!)

The illusion that input is like reading from memory while blocking
waiting for data requires that we choose the source of input before
blocking!

The program: a second attempt

while(1){

if(SONAR_STATUS & READY){

dist = SONAR_DATA;

control(dist,&signal,¶ms);

servo_write(signal);

}

if(RADIO_STATUS & READY){

packet->v1 = RADIO_DATA1;

...;

packet->v2 = RADIO_DATAn;

decode(&packet,¶ms);

}

}

Destroy the functions for
reading and have only

one busy waiting loop!

Centralized busy waiting

I The new implementation checks both status registers in one
big busy-waiting loop. This avoids waiting for the wrong
input.

I We destroyed the simple read operations! VERY not modular!

100% CPU usage, no matter how frequent input data arrives.

Try to make the main loop run less often!

Centralized busy waiting

I The new implementation checks both status registers in one
big busy-waiting loop. This avoids waiting for the wrong
input.

I We destroyed the simple read operations! VERY not modular!

100% CPU usage, no matter how frequent input data arrives.

Try to make the main loop run less often!

Centralized busy waiting

I The new implementation checks both status registers in one
big busy-waiting loop. This avoids waiting for the wrong
input.

I We destroyed the simple read operations! VERY not modular!

100% CPU usage, no matter how frequent input data arrives.

Try to make the main loop run less often!

Centralized busy waiting

I The new implementation checks both status registers in one
big busy-waiting loop. This avoids waiting for the wrong
input.

I We destroyed the simple read operations! VERY not modular!

100% CPU usage, no matter how frequent input data arrives.

Try to make the main loop run less often!

The program: a third attempt

The cyclic executive

while(1){

sleep_until_next_timer_interrupt();

if(SONAR_STATUS & READY){

dist = SONAR_DATA;

control(dist,&signal,¶ms);

servo_write(signal);

}

if(RADIO_STATUS & READY){

packet->v1 = RADIO_DATA1;

...;

packet->v2 = RADIO_DATAn;

decode(&packet,¶ms);

}

}

The CPU runns at a
fixed rate! The timer
period must be set to
trade power
consumption against
task response!

Problems?

echoes

radio
packets

sonar

If processing time for the infrequent radio packets is much longer
than for the frequent sonar echoes . . .

Concurrent execution

I We could solve (in a rather ad-hoc way) how to wait
concurrently.

I Now we need to express concurrent execution . . .

Imagine . . .

. . . that we could interrupt execution of packet decoding when a
sonar echo arrives so that the control algorithm can be run. Then
decoding could resume! The two tasks fragments are interleaved.

Concurrent execution

I We could solve (in a rather ad-hoc way) how to wait
concurrently.

I Now we need to express concurrent execution . . .

Imagine . . .

. . . that we could interrupt execution of packet decoding when a
sonar echo arrives so that the control algorithm can be run. Then
decoding could resume! The two tasks fragments are interleaved.

Interleaving by hand

void decode(struct Packet *pkt, struct Params p){

phase1(pkt,p);

try_sonar_task();

phase2(pkt,p);

try_sonar_task();

phase3(pkt,p);

}

void try_sonar_task(){

if(SONAR_STATUS & READY){

dist = SONAR_DATA;

control(dist,&signal,¶ms);

servo_write(signal);

}

}

Again we break tha
logical organization of
the program in an
ad-hoc way! How many
phases of decode will
we need to run the sonar
often enough?

Interleaving by hand

void decode(struct Packet *pkt, struct Params p){

phase1(pkt,p);

try_sonar_task();

phase2(pkt,p);

try_sonar_task();

phase3(pkt,p);

}

void try_sonar_task(){

if(SONAR_STATUS & READY){

dist = SONAR_DATA;

control(dist,&signal,¶ms);

servo_write(signal);

}

}

Again we break tha
logical organization of
the program in an
ad-hoc way! How many
phases of decode will
we need to run the sonar
often enough?

Interleaving by hand

void decode(struct Packet *pkt, struct Params p){

phase1(pkt,p);

try_sonar_task();

phase2(pkt,p);

try_sonar_task();

phase3(pkt,p);

}

void try_sonar_task(){

if(SONAR_STATUS & READY){

dist = SONAR_DATA;

control(dist,&signal,¶ms);

servo_write(signal);

}

}

Again we break tha
logical organization of
the program in an
ad-hoc way! How many
phases of decode will
we need to run the sonar
often enough?

Interleaving by hand

void decode(struct Packet *pkt, struct Params p){

phase1(pkt,p);

try_sonar_task();

phase2(pkt,p);

try_sonar_task();

phase3(pkt,p);

}

void try_sonar_task(){

if(SONAR_STATUS & READY){

dist = SONAR_DATA;

control(dist,&signal,¶ms);

servo_write(signal);

}

}

Again we break tha
logical organization of
the program in an
ad-hoc way! How many
phases of decode will
we need to run the sonar
often enough?

Interleaving by hand

More fine breaking up might be needed . . .

void phase2(struct Packet *pkt, struct Params *p){

while(expr){

try_sonar_task();

phase21(pkt,p);

}

}

Interleaving by hand

More fine breaking up might be needed . . .

void phase2(struct Packet *pkt, struct Params *p){

int i = 0;

while(expr){

if(i%800==0)try_sonar_task();

i++;

phase21(pkt,p);

}

}

Code can become very unstructured and complicated very soon.

And then someone might come up with a new, better decoding
algorithm . . .

Interleaving by hand

More fine breaking up might be needed . . .

void phase2(struct Packet *pkt, struct Params *p){

int i = 0;

while(expr){

if(i%800==0)try_sonar_task();

i++;

phase21(pkt,p);

}

}

Code can become very unstructured and complicated very soon.

And then someone might come up with a new, better decoding
algorithm . . .

Interleaving by hand

More fine breaking up might be needed . . .

void phase2(struct Packet *pkt, struct Params *p){

int i = 0;

while(expr){

if(i%800==0)try_sonar_task();

i++;

phase21(pkt,p);

}

}

Code can become very unstructured and complicated very soon.

And then someone might come up with a new, better decoding
algorithm . . .

Automatic interleaving?

There are 2 tasks, driven by independent input sources.

Handle sonar echoes running the
control algorithm and updating
the servo.

Handle radio packets by running
the decoder.

Had we had access to 2 CPUs we could place one task in each. We
can imagine some contruct that allows us to express this in our
program.

Automatic interleaving?

There are 2 tasks, driven by independent input sources.

Handle sonar echoes running the
control algorithm and updating
the servo.

Handle radio packets by running
the decoder.

Had we had access to 2 CPUs we could place one task in each. We
can imagine some contruct that allows us to express this in our
program.

Automatic interleaving?

There are 2 tasks, driven by independent input sources.

Handle sonar echoes running the
control algorithm and updating
the servo.

Handle radio packets by running
the decoder.

Had we had access to 2 CPUs we could place one task in each. We
can imagine some contruct that allows us to express this in our
program.

Automatic interleaving?

There are 2 tasks, driven by independent input sources.

Handle sonar echoes running the
control algorithm and updating
the servo.

Handle radio packets by running
the decoder.

Had we had access to 2 CPUs we could place one task in each. We
can imagine some contruct that allows us to express this in our
program.

Two CPUs

Servo output portSensor input port

Radio input port

parameters

read write

read

CPU1

Controller

RAM

CPU2

Controller

Two CPU’s program

struct Params params;

void controller_main(){

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

¶ms);

servo_write(signal);

}

}

void decoder_main(){

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,¶ms);

}

}

We need some way of making one program of this! We will deal
with it next lecture!

Concurrent Programming

Concurrent programming is the name given to programming
notation and techniques for expressing potential parallelism and
solving the resulting synchronization and communication problems.

A system supporting seemingly concurrent execution is called
multi-threaded.

A thread is a unique execution of a sequence of machine
instructions, that can be interleaved with other threads executing
on the same machine.

Concurrent Programming

Concurrent programming is the name given to programming
notation and techniques for expressing potential parallelism and
solving the resulting synchronization and communication problems.

A system supporting seemingly concurrent execution is called
multi-threaded.

A thread is a unique execution of a sequence of machine
instructions, that can be interleaved with other threads executing
on the same machine.

Concurrent Programming

Concurrent programming is the name given to programming
notation and techniques for expressing potential parallelism and
solving the resulting synchronization and communication problems.

A system supporting seemingly concurrent execution is called
multi-threaded.

A thread is a unique execution of a sequence of machine
instructions, that can be interleaved with other threads executing
on the same machine.

Where should threads belong?

A programming language?

As in Java or Ada. Programs are well organized and are
independent of the OS.

Libs and OS?
Like C with POSIX threads? Good for multilanguage composition
given that OS standards are followed.

This course
For pedagogical purposes we choose to work with C and a small
kernel.

Where should threads belong?

A programming language?

As in Java or Ada. Programs are well organized and are
independent of the OS.

Libs and OS?
Like C with POSIX threads? Good for multilanguage composition
given that OS standards are followed.

This course
For pedagogical purposes we choose to work with C and a small
kernel.

Where should threads belong?

A programming language?

As in Java or Ada. Programs are well organized and are
independent of the OS.

Libs and OS?
Like C with POSIX threads? Good for multilanguage composition
given that OS standards are followed.

This course
For pedagogical purposes we choose to work with C and a small
kernel.

Where should threads belong?

A programming language?

As in Java or Ada. Programs are well organized and are
independent of the OS.

Libs and OS?
Like C with POSIX threads? Good for multilanguage composition
given that OS standards are followed.

This course
For pedagogical purposes we choose to work with C and a small
kernel.

Our first multithreaded program

struct Params params;

void controller_main(){

int dist, signal;

while(1){

dist = sonar_read();

control(dist,

&signal,

¶ms);

servo_write(signal);

}

}

void decoder_main(){

struct Packet packet;

while(1){

radio_read(&packet);

decode(&packet,¶ms);

}

}

main(){

spawn(decoder_main);

controller_main();

}

	
	The C preprocessor
	Test Driven Development
	Hardware interfacing
	The need for threads

