
Reconstruction and verification of group
membership protocols

Muhammad Atif, Sjoerd Cranen, MohammadReza Mousavi

Eindhoven University of Technology

Abstract. In this paper, we present a process-algebraic specification of
group membership protocols specified in [Y. Amir, D. Dolev, S. Kramer
and D. Malki, Membership Algorithms for Multicast Communication
Groups, Springer-Verlag, 1992]. In order to formalise the protocol and
its properties we disambiguate the informal specification provided by the
paper. This requires trying different possible interpretations in the formal
model and checking the consistency of the assumption and formally veri-
fying the correctness properties. We thus present a formal reconstruction
of the membership algorithms and model-check our reconstruction.

1 Introduction

Group membership protocols [CKV01] form an important foundation for dis-
tributed systems, allowing the different nodes in such a system to maintain a
consistent view on which nodes are currently active. Naturally, a group member-
ship protocol must be able to deal with nodes deliberately entering and leaving
the current configuration set. However, it is also important for a group mem-
bership protocol to be fault-tolerant; due to faulty behaviour of nodes or of the
network, nodes might also be considered inactive.

Pioneering algorithms among group membership protocols are the ones pre-
sented by Amir et al. in [ADKM92a]; these were the first group membership
protocols with support for partitioning [CKV01]. Our initial intention was to for-
mally specify and verify the algorithms presented in [ADKM92a]. However, we
soon found numerous ambiguities making a straightforward formal specification
of these algorithms virtually impossible. Since our attempts to communicate with
the authors of [ADKM92a] were not successful, we were forced to reconstruct
these algorithms by systematically enumerating, trying and verifying different
possible interpretation of these algorithms. Hence, in this paper, we present two
group membership algorithms inspired by [ADKM92a], formally specify them in
the process algebra mCRL2 [GMA+09] and prove them correct with respect to
the requirements formalized in terms of monitor processes. In our presentation,
we show how we have come up with them and why some other (seemingly sim-
pler and more faithful) interpretations of the algorithms in [ADKM92a] violate
the basic properties required for a group membership algorithm.

The algorithms presented in [ADKM92a] are part of a larger distributed sys-
tem framework called Transis [ADKM92c]. They essentially rely on Transis in

that they use some services provided by Transis and also augment its function-
ality by providing facilities for group membership. Hence, in our formalization,
we not only build a formal model of these algorithms, but also develop a formal
layer of abstraction presenting the behavior of Transis.

The rest of this paper is organised as follows. In Section 2 the architecture of
the distributed system and protocols studied in this paper is presented. In Section
3 an overview of the process algebra mCRL2 used for our formalization is given.
An informal description of Transis and an excerpt of its formal specification is
provided in Section 4. Section 5 is dedicated to the membership algorithms and
their formalisation. In Section 6 the requirements on the algorithms are defined,
formalised, and verified on the formal models. A brief overview of the related
work is given in Section 7. The paper is concluded in Section 8.

2 Architecture of the Distributed System

In short, the goal of the membership protocol is to keep a consistent view of
the group among the member nodes by handling faults, i.e., failing nodes or
communication channels (to be excluded from the group’s view), and joins, nodes
joining the network (to be added to the group’s view).

The original paper [ADKM92a] specifies the membership protocol as a com-
bination of a fault-handling mechanism and a join-handling mechanism, running
on top of a communication subsystem called Transis. Both mechanisms are first
explained separately, and then combined (only requiring modification of the join
mechanism) to form the full membership protocol.

Essentially, the feature of Transis used in the specification of membership
algorithms is a service called causal multicast. This service broadcasts messages
to a group of recipients, and guarantees that the delivery of messages at their
destination preserves a certain ordering, the causal order (a formal description of
this order is given in the remainder of this paper). Preserving this order involves
a directed acyclic graph, or DAG, of which the nodes are messages and the edges
are direct causal orderings. This DAG is constructed locally at every node. As
each node is supposed to construct the exact same graph, the local copies are
often collectively referred to as ‘the DAG’.

The first thing we would like to establish is what status the membership
protocol has. Is it part of Transis, does it operate on top of Transis, or is it
an independently operating application? The following quotes from [ADKM92a]
seem to indicate that none of the above are exactly true.

The membership protocol operates above the Transis communication
layer, such that message arrival order within the protocol preserves
causality. [p. 295]

From [ADKM92b,ADKM92a,ADKM92c] we deduce that messages are inserted
into the DAG by Transis on arrival. Messages are delivered to the upper level
by Transis when they become deliverable in the DAG. The first quote above
suggests that the membership protocol therefore has to wait until a message

becomes deliverable in the DAG. The following quote however implies that the
protocol must be able to handle messages before they are delivered.

When a FA message is inserted into the DAG, the faults algorithm marks
it nondeliverable. [p. 298]

The next quote reveals the cause of the confusion: the boundary between Transis
and the membership protocol is not a strict one.

The Transis communication sub-system [...] delivers the messages to the
upper level. The services use different delivery criteria on the messages
in the DAG. In some cases, the membership protocol interferes with the
delivery of messages, as we shall see below. [p. 296]

We choose to resolve the above inconsistency by ignoring the first quote,
which suggests a strict separation between Transis and the protocols and assumes
causal ordering on the arrival of messages. As we will see in the rest of this
document, it seems likely that the membership protocol uses Transis to keep
track of the causal order of messages, but does in fact deal with messages that
arrive out of causal order.

In order to make the formalisation of the protocol easier, we would like to
define an interface between Transis and the membership protocol. As mentioned
before, the membership protocol interferes with the normal operation of Transis.
In an attempt to formalise this interference, we assume existence of the following
mechanisms:

– Transis keeps a list of senders from which it will refuse to receive messages.
The membership protocol may alter this list at any given time. We need this
mechanism because the membership protocol needs to “instruct Transis to
disallow any message from f set to enter the DAG” (p. 299, fig. 3).

– Transis distinguishes between membership protocol messages and other mes-
sages. Since the protocol messages arrive at the membership protocol, but
user messages don’t, this must be the case.

– The membership protocol receives the IDs of the senders of received mes-
sages, so that it may recognise nodes that are not in the current configuration
set. We need this to identify ‘foreign messages’ (p. 306, fig. 6).

– The membership protocol receives protocol-specific messages from Transis
upon reception from the channel. As discussed above, the messages must be
handled on arrival, not on delivery.

– The membership protocol may assign markings to messages in the DAG. The
behaviour of Transis is defined in terms of these markings. This marking is
done on in figures 3, 5 and 7 on pages 299, 305 and 307 respectively.

The above mechanisms provide all the functionality that the membership proto-
col needs to influence the behaviour of Transis. We have chosen these mechanisms
such that Transis’ behaviour can be defined independently of the membership
protocol. The only exception to this rule is that Transis distinguishes member-
ship protocol messages from other messages.

Transis Membership protocol

Channel

User

block, unblock, mark

announce, discover, showDAG

ac
ce

pt

de
liv

er

se
nd

re
ce

iv
e

Fig. 1. Communication scheme for a single participant.

Figure 1 shows the context of the membership protocol on a single node. The
membership protocol itself only communicates with Transis, which in turn may
accept and deliver messages from and to the user (the application layer), and
which may send and receive messages to and from the broadcast channel (the
physical layer).

3 mCRL2

mCRL2 [GMA+09] (micro Common Representation Language 2) is a formal
specification language for modeling, validation and verification of concurrent sys-
tems and protocols. It is based on process algebra. We apply it due to the avail-
able expertise and this toolset has already been applied successfully for the be-
havioural analysis of various protocols and distributed systems [FGP+04,vdPE03].
Its accompanying toolset supports different tools, which are used for linearisation
(a simplified form of process suitable for analysis and state space generation),
simulation, reduction and state-space generation (for visualization and analy-
sis).

4 Transis

As mentioned before, we provide a model of Transis in order to be able to
model the membership protocol. We only model those aspects of Transis that
the protocol uses.

We define a set P of participants of the membership protocol, each of which
may be identified by some unique id, and a set M of messages that may be
broadcast by these participants. Transis provides reliable communication, so
whenever a message is broadcast, it will eventually be received by every non-
faulty member of the group. Messages are uniquely identified by their sender
and a counter that indicates how many messages the sender has sent before the

current one. Messages consist of a header for identification, and a payload part.
The payload denotes the type of the messages, e.g., protocol messages denoting
failure or join attempts, or user messages, denoted by the payload USER.

4.1 Causal delivery order

Let, for some p ∈ P and m ∈M, sendp(m) denote the event that node p sends a
message m. Likewise, recvp(m) denotes the event that node p receives a message
m. In [Lam78], Lamport defines a partial ordering on these events, assuming
that events occurring at a single node are totally ordered using ≺p. Inspired by
Lamport’s causal order, Amir et al. introduce the following causal delivery order
on messages.

Definition 1 (Causal delivery order). The causal delivery order is a partial
ordering on the set M of messages, such that m ∈M is said to cause m′ ∈M,
denoted m −→ m′, if and only if for some p ∈ P we have either

– recvp(m) ≺p sendp(m′), or
– sendp(m) ≺p sendp(m′).

If ¬(m −→ m′) and ¬(m′ −→ m), then m and m′ are said to be concurrent.

Note that the causal delivery order is a transitive relation. The causal delivery
order can be depicted as a DAG in which M is the set of nodes, and −→ defines
the set of edges such that there is an edge from m to m′ if and only if m −→ m′

and there is no m′′ such that m −→ m′′ and m′′ −→ m′.
In Transis, acknowledgements to the receipt of messages are sent along with

new messages, thus ensuring that every node can derive the order at which events
have taken place at a certain node. Therefore, each node can construct the above
DAG independently, even though local views may be incomplete at any time due
to delays in the network.

4.2 Pseudo code

Before we give a formal specification of the part of Transis that is needed to
enable the membership protocol, we first describe it informally. Figure 2 gives
the pseudo-code snippet of the Transis’ response to certain events. In this pseudo-
code, the following events may occur:

– block(q), unblock(q) The membership protocol wishes to allow or disallow
messages from q ∈ P to enter the DAG.

– mark(m, k) The membership protocol wants to mark m ∈M with marking
k.

– accept(p) The user wishes to broadcast payload p.
– receive(q,m) The communication channel has received message m from

sender q ∈ P.

Transis itself produces the ‘discover’, ‘announce’, ‘send’ and ‘deliver’ events,
although for the sake of brevity the latter is not shown in the pseudo code; where
the pseudo code says ‘deliver messages’, Transis uses criteria on its DAG to decide
which messages may be delivered, if any. Out of these messages, it delivers one
(i.e. it produces a ‘deliver’ event) and then repeats this checking and sending
until no further message may be delivered. This specification guarantees that
messages are delivered as soon as they become deliverable. In order to guarantee
progress, we assume that deliverable messages are immediately delivered to the
application layer.

Events are assumed to be processed in a queue-like manner: they do not get
lost, and are processed in order of arrival.

Transis(id, c,DAG, B)

on block(q)
B = B ∪ {q}

on unblock(q)
B = B \ {q}

on mark(m, k)
update DAG
deliver messages

on accept(p)
send(q, 〈〈id, c〉, p〉)
c = c+ 1

on receive(q,m)
if q /∈ B then

if isUSER(m) then
discover(q)
insert m with marking deliverable into DAG
deliver messages

else
announce(q, payload(m))
receive marking k for m
insert m with marking k into DAG
deliver messages

Fig. 2. Pseudo-code for the Transis process.

5 The membership protocol

In this section we attempt to construct an accurate description of the member-
ship protocol from [ADKM92a]. The goal of this protocol is to keep track of the
Current Configuration Set (CCS) of the node it is run on, and therefore needs to
deal with nodes leaving and entering the network. The paper [ADKM92a] starts
with describing a protocol that deals with faults only, and then adapts it to also
allow for participants joining a CCS. We follow their approach by describing
the fault handling protocol in section 5.1 and the full membership protocol in
section 5.2.

5.1 Faults protocol

The first protocol described in [ADKM92a] and re-constructed and verified
here merely deals with faulty participants, i.e., participants that—for whatever

reason—do not communicate with other participants any longer. In [ADKM92a],
the following assumptions have been made:

– Messages are not delayed indefinitely.

– Communication breaks can be detected.

– Initially, all participants in CCS know the contents of CCS .

We note that the CCS may differ per node, as the network may be partitioned.

Pseudo-code The idea behind the faults protocol is quite simple. Once a com-
munication break with another participant is detected, this information is shared
with the other participants by means of an FA (fault) message. Each node q has
its own set F of participants that it thinks have failed, and a list LastF that
contains, for each participant q′, the set of participants that q knows are in the
set F of q′. When all participants have the same F set, then this will eventually
cause LastF to contain only sets equal to F , and participants can then locally
conclude that consensus is reached.

Fig. 3. The faults protocol description, taken from [ADKM92a].

The original pseudo-code for the faults protocol is shown in Figure 3 and
consists of four if -statements. However, the semantics of those four if -statements
seems to be different; the first two are mutually exclusive and distinguish the
type of event that occurred, while (for the reasons given below) the last two
statements are to be executed sequentially. Our interpretation of the first and
the last if -statements are respectively presented in the pseudo-code in Figure 4
and Figure 5. Note that the pseudo-code in Figure 4 invokes the pseudo-code of
Figure 5.

FaultsProtocol

on commbreak(q)
Last , F = FPCheck

on announce(q,FA(f set))
Last [q] = Last [q] ∪ f set
mark(id,undeliverable)
Last , F = FPCheck

Fig. 4. The interpretation of the pseudo-code in Figure 3.

It is unlikely that the authors mean the first two statements to be executed
sequentially, as both statements introduce a definition for f set. The original pa-
per states that the pseudo-code gets executed “whenever communication breaks
with q or a [sic] FA message is received”.

We assume that events are handled one by one, i.e., no two events are pro-
cessed simultaneously.

FPCheck

if f 6⊆ F then
F = F ∪ f
block(f)
accept(FA(F))

if ∀q ∈ (CCS \ F) : Last [q] = F then
Mark all FA(f set) messages slow that have f set ⊆ F
return ⊥, ∅

else
return Last , F

Fig. 5. The interpretation of the pseudo-code in in Figure 3.

The interpretation of the last two if -statements in figure 5 makes sense be-
cause the first of these if statements may influence the truth value of the con-
dition of the second.

5.2 Full membership protocol

The full membership protocol extends the faults protocol by adding a mechanism
to deal with participants that should join the network. Its interesting features
are the ability to deal with partitioning and joining up of partitions and its fully
symmetric structure.

As explained in the remainder of this section, the full membership protocol
is described using three ‘stages’. The intuition behind the stages is that the
response to protocol messages is different in every stage. Although in [ADKM92a]

it is nowhere made clear that the faults protocol is being run together with the
so-called ‘modified join protocol’, we can safely assume that this is the case as
the modified join protocol only deals with faults during a joining operation.

However, we cannot run the faults protocol without modification: the original
pseudo-code states that the faults protocol is executed “Whenever communica-
tion breaks with q or a [sic] FA message is received”. But when the join protocol
is running, FA messages are being dealt with by the join protocol. We therefore
assume that the faults protocol is also treated as a ‘stage’; when no protocol is
active, then the first message to arrive determines which stage the membership
protocol moves to. The stages of the protocol are shown in figure 6.

FullMembershipProtocol

FaultsProtocol

JoinStage0 JoinStage1 JoinStage2

Fig. 6. Different stages of the membership protocol.

In our formal model, the FaultsProtocol stage is only defined implicitly;
the FullMembershipProtocol handles faults, and JoinStage0 is never en-
tered between detection of a fault and reaching consensus on the failed partici-
pants.

FullMembershipProtocol

on
commbreak(q), q ∈ CCS

Last , F =
FPCheck(Last , F, {q})

on discover(q), q /∈ CCS
if F = ∅ then

Broadcast AJ(CCS)
Set a timer
J = CCS
JoinStage1

on announce(q,FA(f set)), q ∈ CCS
Last [q] = Last [q] ∪ f set
mark(id,undeliverable)
Last , F =
FPCheck(Last , F, f set)

on announce(q,AJ(j set)), q ∈
CCS

if F = ∅ then
Set a timer
J = CCS
JoinStage1

Fig. 7. The full membership protocol changes its behaviour dynamically.

JoinStage1

on timer expiration or
commbreak(q), q ∈ CCS

BroadcastJoin
JoinStage2

on announce(q,FA(f set)), q ∈ CCS
IncorporateFA(q, f set, fJ , fF)

on announce(q,AJ(j set))
J = J ∪ j set

on announce(q, JOIN(j set, f set))
Incorporate-

Join(q, j set, f set)

Fig. 8. The full membership protocol changes its behaviour dynamically.

JoinStage2

on announce(q, JOIN(j set, f set))
if j set 6⊆ J∨f set 6⊆ Fbefore then

Incorporate-
Join(q, j set, f set)

BroadcastJoin
else

Incorporate-
Join(q, j set, f set)

JPCheck

on commbreak(q), q ∈ CCS
Fafter = Fafter ∪ {q}
BroadcastFA
JPCheck

on announce(q,FA(f set)), q ∈ CCS
if fJ = J ∧ fF = Fbefore then

Incorpo-
rateFA(q, f set, fJ , fF , after)

BroadcastFA
else if f set 6⊆ Fbefore then

Incorpo-
rateFA(q, f set, fJ , fF , before)

BroadcastJOIN
else

LastF [q] = LastF [q] ∪ f set

JPCheck

Fig. 9. The second stage of the join protocol.

Pseudo-code After a message from a participant outside the CCS is received,
or after an AJ message from a participant in CCS is received, the join protocol
proceeds in two phases. The first phase is entered directly after sending an AJ
message communicating the current CCS , as shown in figure 7.

In the first phase, shown in figure 8, the protocol collects AJ messages from
outside the CCS . After some time, a timer expires and the second phase is
entered. If a communication break occurs before this occasion, then the second
phase is entered early.

In the second phase, shown in figure 9, the participants communicate all
the information from the received AJ messages until consensus is reached (by
executing the code in figure 10) about which participants are connected. Note
that it may occur that no AJ message was received by any of the participants
before their timers expired, in which case the protocol terminates without having
caused a configuration change.

The pseudo code uses some macros given in figure 11, which are a direct
translation of the specification given in [ADKM92a].

The pseudo code given in [ADKM92a] for the join protocol shows ambiguities
similar to those in the faults protocol. We restructure the pseudo code in a similar

fashion as before, in order to be able to convert this code to a formal model later
on.

In figure 8 of that paper, we change j = 〈f set, fb, fa〉 to read j = 〈f set, j set〉
and CCS = j set \ fb to read CCS = j set \ f set, because there is no message
that fits the given description.

In the original specification, a second DAG (the completion DAG) is em-
ployed to ensure that messages are not lost when they are discarded. In our
model, we keep all blocked messages in a buffer, thus keeping the completion
DAG empty (and therefore irrelevant).

We remark that a small change could make the protocol operate more effi-
ciently. As it is now, the first AJ message that is sent only contains the own CCS ,
so all participants in CCS will go to the next stage without knowing who wishes
to join. When the timer expires too soon, it might happen that the participants
move to stage 2 without having received an AJ message from the participant
that wishes to join, and consensus will be reached on the old CCS .

This behaviour can be avoided by sending an AJ(CCS +{q}) and initializing
J = CCS + {q} when receiving a foreign message, and by updating J = CCS +
j set when receiving an AJ(j set) message in figure 7.

Another odd aspect of the specification is that the first if -statement in figure
10 may cause the protocol to assent to the same (and possibly even empty) faults
set repeatedly. Even though it does not affect the behaviour of the protocol, it
seems strange that this path in the pseudo code is executed unnecessarily often.

6 Verification

The purpose of the membership protocols in [ADKM92a] is to guarantee two
properties, namely consensus and virtual synchrony. In this section we recon-
struct what these notions mean, as they are not formally defined in the aforemen-
tioned paper. We then formalize these requirements in terms of monitor processes
and then verify that these monitors do not detect errors in our formalisations of
the membership protocols.

JPCheck

if ∀
q∈CCS\Fbefore

LastF [q] ⊇ Fbefore ∩ CCS then

assent to Fbefore ∩ CCS
mark all FA(f set) deliverable that have f set ⊆ Fbefore ∩ CCS

if ∀q∈J\(Fbefore∪Fafter)
LastJ [q] = 〈J, Fbefore〉 ∧ LastF [q] ⊇ Fafter then

assent to 〈J, Fbefore, Fafter〉
mark all JOIN(J, Fbefore) deliverable
mark all FA(f set) deliverable that have f set ⊆ Fafter

Fig. 10. The consensus check for the join protocol.

BroadcastJoin(j set, f set)

Fbefore = Fbefore ∪ Fafter
Fafter = ∅
broadcast JOIN(J, Fbefore)
mark all JOIN(j set, f set) rejected

if j set 6= J or f set 6= Fbefore

IncorporateFA(q, f set, fJ , fF , x)

Fx = Fx ∪ f set
LastF [q] = LastF [q] ∪ f set
block(Fx)

IncorporateJoin(q, j set, f set)

J = J ∪ j set
LastJ [q] = 〈j set, f set〉
Fbefore = Fbefore ∪ f set
LastF [q] = LastF [q] ∪ f set
mark the message undeliverable

Fig. 11. Macros used in the join protocol.

As explained above, the full membership protocol can be seen as a compo-
sition of the faults protocol and the join protocol, which then operate mutually
exclusively. In order to keep the verification problem tractable, we verify both
protocols separately.

6.1 Consensus

The protocols presented in [ADKM92a] are claimed to be correct with respect
to a property called consensus. The meaning of this property is formulated as
follows:

P.1 Maintain the CCS in consensus among the set of machines that are
connected throughout the activation of the membership protocol. [p. 300]

Regrettably, this property is not referred to again in the rest of the paper. It is,
however, stated two pages earlier that in the faults protocol “different machines
need not assent to the same F set”. Because we know that assenting to an F set
means that the local view on the current configuration set changes, this must
mean that at certain points in time it is allowed for two participants in the same
network to have different views on the CCS. Hence, we can deduce that some
forms of incoherence are allowed.

Indeed we can think of a simple scenario in which two nodes assent to different
F sets, as depicted in the message sequence chart in figure 6.1. Here we see that
p0 believes for a short period that p1 is still alive, while p2 assents to the failure
of p1 and p3 directly. Thus, we need to find an interpretation of consensus that
is consistent with these intermittent incoherencies. We therefore propose the
following, more precise definition of consensus.

Definition 2 (Consensus). A participant p ∈ P is said to be unstable, denoted
unstable(p), if a membership protocol is executing (i.e. F ∪J 6= ∅). A membership
protocol preserves the property of consensus if at all times we have that

∀p,q∈P (q ∈ CCSp ∧ ¬ (unstable(p) ∨ unstable(q)))⇒ CCSp = CCSq

p0 p1 p2 p3

Legend
× Failure
Detection of failure
 Assent to new F-set

FA message
Faults protocol executing

Fig. 12. A simple case in which two nodes assent to different sets of failed nodes.

where CCSp denotes the local view of p ∈ P on the current configuration set.

Note that this definition allows for the existence of cliques (due to partition-
ing) and for nodes not assenting to the same fault or join sets. In particular, the
situation in Figure 6.1 is allowed.

6.2 Virtual synchrony

Another aspect informally described in [ADKM92a] is the notion of virtual syn-
chrony. In the introduction, the following descriptions can be found.

Virtual-synchrony. It guarantees that members of the same configuration
receive the same set of messages between every pair of configuration
changes. [p. 293]

The technical report [ADKM92b] describing the membership protocols refers to
[SBS91] as the source of their notion of virtual synchrony. However, the latter
paper only defines virtual synchrony in terms of processes ‘observing consistent
delivery orders’, and not in terms of delivering messages in between configuration
changes, like in the second quote above. This seems to indicate that all messages
should be sent in Transis’ causal multicast mode, but that conflicts with the
following quote.

The Basic service of Transis overcomes arbitrary communication delays
and message losses and guarantees fast delivery of messages at all of
the currently connected destinations. The membership protocol auto-
matically maintains the set of currently connected machines inside the
broadcast domain. [p. 293]

The description of causal multicast from the quote below suggests that in the
basic multicast mode, delivery order does not preserve causality:

1. Basic multicast: guarantees delivery of the message at all the con-
nected sites. This service delivers the message immediately from the
DAG to the upper level.

2. Causal multicast: guarantees that delivery order preserves causal-
ity. [p. 296]

Assuming that messages are delivered as soon as they have been inserted into the
DAG however immediately leads to problems: if a configuration change happens
simultaneously at all nodes, but one of the nodes receives a regular message
before that change while another receives that same message only later, then
virtual synchrony (as described in the second quote) is violated.

In the proof of the faults protocol, we find the following:

If a message follows any of the messages in Electorsp(f), it is delivered
only after the configuration change of f . [p. 300]
Then p and q deliver the same set of causal messages [...] [p. 300]

These quotes seem to indicate that we are dealing with causal delivery order.
The above quote speaks of “causal messages”, which seems to indicate that

there are other types of messages being delivered too. We therefore assume that
the basic multicast and causal multicast services can be used independently.

Remember that the faults and join protocol change the CCS on delivery of
FA and JOIN messages. Call these messages configuration changing messages.
Trying to formulate a property in the spirit of [SBS91] that matches [ADKM92a],
we define virtual synchrony as follows:

Definition 3 (Virtual synchrony). The network is virtually synchronous if
and only if

– configuration changing messages are delivered in the same order at every
node, and between every two delivered, and

– if m1 and m2 are configuration changing messages, and a node delivers a
message m that was sent using the causal multicast service after m1 but
before m2, then all other nodes in the current CCS deliver m after m1 and
before m2.

6.3 Requirements monitoring

In order to verify that the faults and join protocols have the desired properties,
we construct monitor processes that produce an error action upon violation of
the requirement they encode. We check reachability of this action on the system
composed in parallel with the monitor processes.

The consensus monitor synchronises with the system whenever a process
crashes and whenever a process starts or stops executing the faults (resp. join)
protocol (i.e. whenever a process assents to a configuration change). When no
processes are executing the faults (join) protocol, we require that the processes
have assented to the same changes. If not, then an error action is possible.

The virtual synchrony monitor synchronises with the system whenever a
process delivers a message. For every process, the monitor process keeps a list
of delivered messages. Whenever these lists violate definition 3, an error action
is possible.

To check the faults protocol, we model a network consisting of three nodes,
of which one can crash. For the join protocol, we start with a network that is
partitioned into a clique of two nodes, of which one may crash at any given time,
and a clique consisting of a single node. Every node is allowed to send a user
message (i.e. a message that has no meaning for the protocol, but that is sent
using the causal multicast service) once.

Results The specification of the protocols in mCRL2 are transformed to lin-
ear process specification format [GMA+09] using the mcrl22lps tool. We then
check reachability of the error action with the lps2lts tool. If an error action is
reachable, then this tool will produce a trace that leads to this action.

Verification was done using a Q9400 Intel R© CoreTM 2 Quad CPU (of which
one core is used) and 3GB of memory using the mCRL2 toolset development
version (revision 7884).

For the faults protocol, it took 28 minutes and 55 seconds to exhaust the
state space comprising about 1.2 million states (this state space is the result of
the composition of the monitor process and the protocol specification). We could
successfully verify both consensus and virtual synchrony for our formal model
of the faults protocol.

For the join protocol, the state-space proved to be too large to be verified
in a few days. Hence, we resorted to bounded model-checking by limiting the
depth or the breadth of the search algorithm. Using the limit on the depth,
we successfully verified over 4 million system states (22 levels, i.e. 22 ‘steps’ in
the protocol), and over 113 million for the consensus property alone. Using the
highway search (breadth-constrained) algorithm [EGvWW09], we could verify
1000 randomly chosen states on every level of the state space.

The complete models of the protocols and the monitors are available online
at http://www.win.tue.nl/~atif/adkm_membership.zip.

7 Related Work

An overview of different group membership protocols can be found in [CKV01],
where [ADKM92a] is cited as the first group membership protocol dealing parti-
tioning. We have gathered and used scattered information about the algorithms
of [ADKM92a] and its underlying system from various sources about the proto-
cols and the Transis system [ADKM92a,ADKM92b,ADKM92c].

In the literature several attempts have been made to formalise and verify
group membership protocols. The first one, that we are aware of is [Ric93],
where a group membership algorithm has been formalised and verified. Later in
[ACbMT95], a number of flaws were identified in the formalisation of [Ric93]. In
[BDM01], a formal specification of a group membership protocol is presented.

8 Conclusions

We provided a formal specification of the group membership protocols presented
in [ADKM92a] and their correctness properties and model-checked the proper-
ties on the formal specifications. For the formalisation, we had to disambiguate
the description provided in the original paper and in order to realise the proper-
ties, we had to try different interpretations of the informal text. The process of
disambiguation has been laborious and rather difficult; it often appeared from
the formal analysis that the most natural interpretation of the text led to incon-
sistencies or incorrect behaviour and thus, less faithful interpretations of the text
had to be used in order to reconstruct correct group membership protocols. We
could successfully model-check our final specification of the faults protocol. For
the join protocol, we had to resort to bounded model-checking, which did not
indicate any counter-example after both a highway search (breadth-constrained)
as well as depth-constrained search.

References

[ACbMT95] Emmanuelle Anceaume, Bernadette Charron-bost, Pascale Minet, and
Sam Toueg. On the formal specification of group membership services.
Technical Report 95-1534, INRIA Rocquencourt, 1995.

[ADKM92a] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Membership
algorithms for multicast communication groups. In WDAG ’92: Proceed-
ings of the 6th International Workshop on Distributed Algorithms, pages
292–312, London, UK, 1992. Springer-Verlag.

[ADKM92b] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Member-
ship algorithms in broadcast domains. Technical Report 10, The Hebrew
University of Jerusalem, 1992.

[ADKM92c] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: A
communication subsystem for high availability. In FTCS ’92: Proceedings
of the 22nd Annual International Symposium on Fault-Tolerant Comput-
ing, pages 76–84, 1992. IEEE Computer Society.

[BDM01] Özalp Babaoglu, Renzo Davoli, and Alberto Montresor. Group commu-
nication in partitionable systems: Specification and algorithms. IEEE
Trans. Software Eng., 27(4):308–336, 2001.

[CKV01] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group com-
munication specifications: a comprehensive study. ACM Comput. Surv.,
33(4):427–469, 2001.

[EGvWW09] Tom A.N. Engels, Jan Friso Groote, Muck J. van Weerdenburg, and
Tim A.C. Willemse. Search algorithms for automated validation. Journal
of Logic and Algebraic Programming, 78(4):274 – 287, 2009.

[FGP+04] Wan Fokkink, Jan Friso Groote, Jun Pang, Bahareh Badban, and Jaco
van de Pol. Verifying a sliding window protocol in µCRL. In Charles
Rattray, Savi Maharaj, and Carron Shankland, editors, AMAST, volume
3116 of Lecture Notes in Computer Science, pages 148–163. Springer,
2004.

[GMA+09] Jan Friso Groote, Aad Mathijssen, Michel A. Reniers, Yaroslav S.
Usenko, and Muck van Weerdenburg. Analysis of distributed systems

with mCRL2. In Handbook of Process Algebra for Parallel and Distributed
Processing, pages 99–128. CRC Press, 2009.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[Ric93] Aleta Ricciardi. The Group Membership Problem in Asynchronous Sys-
tems. PhD thesis, Department of Computer Science, Cornell University,
1993.

[SBS91] A. Schiper, K. Birman, and P. Stephenson. Lightweight causal and atomic
group multicast. ACM Transactions on Computer Systems (TOCS),
9(3):314, 1991.

[vdPE03] Jaco van de Pol and Miguel Valero Espada. Verification of javaspacestm

parallel programs. In ACSD ’03: Proceedings of the 3rd International
Conference on Application of Concurrency to System Design, pages 196–
205. 2003. IEEE Computer Society.

