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and academic excellence

in embedded systems 

engineering”

Vision: 

“Create economic and societal impact & value

by embedded systems technology”
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Embedding intelligence

into physical products

Typical characteristics:

 Multi-disciplinary design

 Software complexity

 Physical environments

 Distributed or networked

 Constrained resources

 Critical applications

 Quality, reliability, testing

 System evolution

ESI :  Embedded Systems Engineering



Consumer Electronics 

Medical Systems

Research

Applied Technologies

Research cooperation with leading Dutch 

high-tech multinational industries & SME’s

Research cooperation with all Dutch 

universities with embedded systems research

Industrial

Network

Academic

Network

Research cooperation in EU projects

ESI 

http://www.thalesgroup.com/home
http://www.fei.com/
http://www.nxp.com/index.html
http://www.bredeschool.nl/bredeschool/index.php?eID=tx_cms_showpic&file=uploads/pics/logo-UM.jpg&width=500m&height=500&bodyTag=<body bgColor="#ffffff">&wrap=<a href="javascript:close();"> | </a>&md5=b7f0d1a522fe6c2db5e09b47716fc69a
http://www.technolution.nl/
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Model-Based Testing

Motivation
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What do Dykes have to do

with Quality of Embedded Systems ?
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What do Dykes have to do

with Quality of Embedded Systems ?
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Embedded Systems



Software is brain of system

• software controls, connects, monitors

almost any aspect of ES system behaviour

• majority of innovation is in software

Software determines 

quality and reliability

of Embedded System 

• often  > 50 %  of system defects

are software bugs
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Quality of Embedded Systems



Software is Different

Software is different from hardware :

• non-continuous

• any bug is a design error

• adopting redundancy is useless

• no wear and tear

• no MTBF;  what is software reliability?
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Trends & Challenges

multi

disciplinarity

complexity

size
connectivity

systems-of-systems

change

variability

evolvability

uncertainty
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Model-Based Testing



Checking or measuring

some quality characteristics

of an executing software object

by performing experiments

in a controlled way

w.r.t. a specification
tester

specification
SUT

System Under Test

Software Testing
specification-based, 

active, black-box testing 

of functionality
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SUT

pass fail

model-based

test 

generation

test 

execution 

model

Model-Based Testing

MBT

next step in

test automation:

+ test generation

+ result analysis 
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SUT

System Under Test

pass fail

1. Manual testing

1 :  Manual Testing
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SUT

pass fail

test 

execution 

TTCNTTCNtest

cases

1. Manual testing

2. Scripted testing

2 :  Scripted Testing
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SUT

pass fail

test 

execution 

1. Manual testing

2. Scripted testing

3. Keyword-driven 

testing

3 :  Keyword-Driven Testing

high-level

test notation

19

test

scripts



system

model

SUT

TTCNTTCNTest

cases

pass fail

model-based

test 

generation

test 

execution 

1. Manual testing

2. Scripted testing

3. Keyword-driven 

testing

4. Model-based 

testing

4 :  Model-Based Testing
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MBT: next step in test automation

• Automatic test generation

+  test execution  +  result analysis

• More, longer, and diversified test cases

more variation in test flow and in test data

• Model is precise and consistent test basis

unambiguous analysis of test results

• Test maintenance by maintaining models

improved regression testing

• Expressing test coverage

model  coverage

customer profile coverage

MBT :  Benefits

detecting more bugs 

faster and cheaper

SUT

pass fail

model-based

test 

generation

test 

execution 

model
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MBT :  State of the Art

• promising, emerging

• a number of successful applications

• many companies are experimenting

MBT :  State of Practice

• lagging behind

Reasons

• technical

• tools

• organizational

• maturity of testing

• educational

• . . . . .

MBT :  State for the Future

(for High-tech Embedded Systems)     

• ?

MBT :  Benefits ?
But ....

If doing MBT is so smart, 

why ain’t you rich ? 
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Model-Based

Verification, Validation, Testing,  . . . . .
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Doing Something with Models

• Modelling making a model reveals errors 

• Simulation go step-by-step through the model

• Model checking go through all states of the model

• Theorem proving prove theorems about the model

• Code generation executable code from the model

• Testing test an implementation for compliance

• Model learning generate a model from observation



Validation, Verification, Testing

SUT

model

informal world

real world

validation

model-based testing

verification

informal

requirements
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formal world
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formal 
world

concrete 
world

Verification is only as good as 

the validity of the model on 

which it is based

Verification and Testing

Model-based verification :

• formal manipulation

• prove properties

• performed on model

Model-based testing :

• experimentation

• show error

• concrete system

Testing can only show the 

presence of errors, not their 

absence
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Code Generation from a Model

A model is more  (less)

than code generation:

• views

• abstraction

• testing of aspects

• verification and validation

of aspects
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? x (x >= 0)

! y

yx y   =  x

model of 𝒙

• specification of properties

rather than construction

• under-specification

• non-determinism

Code Generation from a Model
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Model-Based Testing

The ioco Theory

for Labelled Transition Systems



30

Model-Based Testing Tools



MBT Tools

• AETG

• Agatha

• Agedis

• Autolink

• Axini Test Manager

• Conformiq

• Cooper

• Cover

• DTM

• fMBT

• Gst

• Gotcha

• Graphwalker

• JTorX

• MaTeLo

• MBTsuite

• M-Frame

• MISTA

• NModel

• OSMO

• ParTeG

• Phact/The Kit

• PyModel

• QuickCheck

• Reactis

• Recover

• RT-Tester

• SaMsTaG

• Smartesting CertifyIt

• Spec Explorer

• StateMate

• STG

• tedeso

• Temppo

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TestOptimal

• TGV

• Tigris

• TorX

• TorXakis

• T-Vec

• Tveda

• Uppaal-Cover

• Uppaal-Tron

• . . . . . . . . . . . 
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MBT Tools  ioco

• AETG

• Agatha

• Agedis

• Autolink

• Axini Test Manager

• Conformiq

• Cooper

• Cover

• DTM

• fMBT

• Gst

• Gotcha

• Graphwalker

• JTorX

• MaTeLo

• MBTsuite

• M-Frame

• MISTA

• NModel

• OSMO

• ParTeG

• Phact/The Kit

• PyModel

• QuickCheck

• Reactis

• Recover

• RT-Tester

• SaMsTaG

• Smartesting CertifyIt

• Spec Explorer

• StateMate

• STG

• tedeso

• Temppo

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TestOptimal

• TGV

• Tigris

• TorX

• TorXakis

• T-Vec

• Tveda

• Uppaal-Cover

• Uppaal-Tron

• . . . . . . . . . . . 
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Yet Another MBT Tool :  TorXakis

• AETG

• Agatha

• Agedis

• Autolink

• Axini Test Manager

• Conformiq

• Cooper

• Cover

• DTM

• fMBT

• Gst

• Gotcha

• Graphwalker

• JTorX

• MaTeLo

• MBTsuite

• M-Frame

• MISTA

• NModel

• OSMO

• ParTeG

• Phact/The Kit

• PyModel

• QuickCheck

• Reactis

• Recover

• RT-Tester

• SaMsTaG

• Smartesting CertifyIt

• Spec Explorer

• StateMate

• STG

• tedeso

• Temppo

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TestOptimal

• TGV

• Tigris

• TorX

• TorXakis

• T-Vec

• Tveda

• Uppaal-Cover

• Uppaal-Tron

• . . . . . . . . . . . 
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TorXakis



Trends & Challenges

multi

disciplinarity

complexity

size
connectivity

systems-of-systems

change

variability

evolvability

uncertainty
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connectivity
multi

disciplinarity

change

variability

evolvability

complexity

uncertainty

heterogeneous

components
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MBT :  Next Step Challenges

model

composition

abstraction

under
specification

uncertainty
nondeterminism

concurrency 
parallelism

state + 

complex data

statistical

usage 

profiles

partial
specification

multiple 

paradigms 
integration

test 

selection

Model

Based

Testing
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Model-Based Testing

TorXakis
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LTS

model

SUT
behaving as

input-enabled LTS

TTCNTTCN
Test

cases

pass fail

LTS

test 

execution 

ioco

test 

generation

set of

LTS tests

SUT passes tests

SUT  ioco  model



sound   exhaustive

TorXakis : LTS  &  ioco
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money

button1 button2

coffeetea

? n :: int

[[ n  35 ]] -> [[ n  50 ]] ->

with data

STS:

model

! n – 35 ! n – 50return return

STS :  Symbolic Transition Systems
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in ? n :: int

[[ n ≠  0 ]]

out ! m :: int

[[ 0 < m < n ]]
out ! m :: int

[[ 0 < m < -n ]]

semantics

out1

out2

out1

out1

out2
out3out2

out1

out1

out2
out3

in-2 in-1

in3
in2

in1
in-3

out1

STS :  Symbolic Transition Systems

in4in-4
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sioco :  Symbolic ioco



41

system

model

SUT

TTCNTTCNTest

cases

pass fail

model-based

test 

generation

test 

execution 

MBT Tools



SUT

system

model

pass fail

model-based

test 

generation

test 

execution 

MBT :  Ingredients

verdict

test result

analysis

requirements

ideas

SUT

test harness       

TTCNTTCNtest

cases
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off-line

MBT



system

model

pass fail

model

based

test 

generation

+

execution

MBT :  On-the-Fly

SUT

test harness       verdict

test result

analysis

requirements

ideas

43

on-the-fly 

MBT



system

model

pass fail

SUT

test harness       verdict

test result

analysis
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on-the-fly 

MBT

TorXakis :  An On-the Fly MBT Tool



socket

pass fail

Tic-Tac-Toe

selenium

Tic-Tac-Toe Rules
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CHANDEF  MyChannels

::= In ; 

Out

ENDDEF

MODELDEF  TicTacToe

::= CHAN IN      In

CHAN OUT   Out

BEHAVIOUR

In ‘X’  >-> Out ‘O’

ENDDEF

CNECTDEF  Sut

::=   CLIENTSOCK

CHAN OUT  In       HOST "localhost"  PORT 7890

ENCODE     In ‘X”   ->  ! ‘X’

CHAN IN      Out  HOST "localhost"  PORT 7890

DECODE      Out    <- ? s

ENDDEF

model.txs



Models

• process-algebraic modelling language

• state-based control flow  and  complex data

• support for  parallel, concurrent  systems

• composing complex models from simple models

• non-determinism, uncertainty

• abstraction, under-specification

46

Tool

• on-line MBT tool

Under the hood

• SMT solvers for constraints and data 

generation (via SMT-LIB: Z3, CVC4)

• testing theory: sioco on STS

• algebraic data-type definitions with rewriting

• Haskell

• LPE: Linear process equations

• Other MBT tools for testing (QuickCheck)

TorXakis :  Overview

But ....

• research prototype

• poor usability

Current Research

• test selection

• variability, features

• modelling

• integration in process

https://github.com/TorXakis

Applications

• several high-tech 

systems companies

• experimental level



62

Model-Based Testing

Applications
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Electronic Passport

New Passport

• Machine Readable Passport  ( MRP,  E-passport )  

• with chip (JavaCard),  contact-less

• storage of picture, fingerprints, iris scan, .......

• access to this data protected by encryption and a new protocol

• few years ago released in EU

Our job:  testing of e-passports

• emphasis on access protocol

== exchange of request-respons messages

between passport and reader (terminal)



64

MBT for E-Passports :  Model
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SUT

TTCNTTCN
Test

cases

model-based

test 

generation

test 

execution 

system

model

model-based

test tool

TorXakis

java

drivers

adapter

state-based
model

e-passport
& wireless

reader 

pass fail

test runs

english
specifications
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• Tested:

– Basic Access Control (BAC)

– Extended Access Control (EAC)

– Active Authentication (AA)

– Data Reading

• Tests up to about 2,000,000 test events

– complemented with manual tests

• No error found  ......

MBT for E-Passports :  Results



MBT in High-Tech Embedded Systems
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Systems

• large, complex, system-of-systems

• complex state + complex data

• variability, product line

• not always up-to-date specifications

• compositional

• parallelism, under-specification

• uncertainty, non-determinism, 

Testing

• state of practice:

keyword-driven test automation

• instrumentation:  existing

keyword-driven test automation

• test selection via usage-profiles

SUT

• testing on simulated SUT:

virtual system, digital twin

Models

• how to make models ?

• who makes models? :   Testers

• DSL  (Domain Specific Languages)

• construct model from tests

MBT in High-Tech Embedded Systems
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Model-Based Testing

Using TorXakis



model

SUT

pass fail

TorXakis

• MBT: the next step

in test automation  ! ?

• The future of testing

is model-based  ! ?

• If not, what is 

the alternative ?

Model-Based Testing

Theory, Tools, Applications

?

https://github.com/TorXakis


