
Model-Based Testing

Theory

Tools

Applications

Jan Tretmans

ESI – Embedded Systems Innovation by TNO

Radboud University Nijmegen

Högskolan i Halmstad

jan.tretmans@tno.nl

SUT

pass fail

model

Jan Tretmans

Embedded Systems Innovation

by TNO

Eindhoven

The Netherlands

Radboud University

Nijmegen

The Netherlands

ESI

RU

UT

Embedded Systems Innovation

by TNO

Mission:

“To advance industrial innovation

and academic excellence

in embedded systems

engineering”

Vision:

“Create economic and societal impact & value

by embedded systems technology”

| The story of TNO

ESI WITHIN TNO

TNO THEMES AND
INNOVATION AREAS

4

Embedding intelligence

into physical products

Typical characteristics:

 Multi-disciplinary design

 Software complexity

 Physical environments

 Distributed or networked

 Constrained resources

 Critical applications

 Quality, reliability, testing

 System evolution

ESI : Embedded Systems Engineering

Consumer Electronics

Medical Systems

Research

Applied Technologies

Research cooperation with leading Dutch

high-tech multinational industries & SME’s

Research cooperation with all Dutch

universities with embedded systems research

Industrial

Network

Academic

Network

Research cooperation in EU projects

ESI

http://www.thalesgroup.com/home
http://www.fei.com/
http://www.nxp.com/index.html
http://www.bredeschool.nl/bredeschool/index.php?eID=tx_cms_showpic&file=uploads/pics/logo-UM.jpg&width=500m&height=500&bodyTag=<body bgColor="#ffffff">&wrap= | &md5=b7f0d1a522fe6c2db5e09b47716fc69a
http://www.technolution.nl/

7

Model-Based Testing

Motivation

8

What do Dykes have to do

with Quality of Embedded Systems ?

9

What do Dykes have to do

with Quality of Embedded Systems ?

10

Embedded Systems

Software is brain of system

• software controls, connects, monitors

almost any aspect of ES system behaviour

• majority of innovation is in software

Software determines

quality and reliability

of Embedded System

• often > 50 % of system defects

are software bugs

11

Quality of Embedded Systems

Software is Different

Software is different from hardware :

• non-continuous

• any bug is a design error

• adopting redundancy is useless

• no wear and tear

• no MTBF; what is software reliability?

12time

h
a
rd

w
a
re

fa
ilu

re
s

Trends & Challenges

multi

disciplinarity

complexity

size
connectivity

systems-of-systems

change

variability

evolvability

uncertainty
13

heterogeneous

components

quality

challenges

14

Model-Based Testing

Checking or measuring

some quality characteristics

of an executing software object

by performing experiments

in a controlled way

w.r.t. a specification
tester

specification
SUT

System Under Test

Software Testing
specification-based,

active, black-box testing

of functionality

15

SUT

pass fail

model-based

test

generation

test

execution

model

Model-Based Testing

MBT

next step in

test automation:

+ test generation

+ result analysis

16

SUT

System Under Test

pass fail

1. Manual testing

1 : Manual Testing

17

SUT

pass fail

test

execution

TTCNTTCNtest

cases

1. Manual testing

2. Scripted testing

2 : Scripted Testing

18

SUT

pass fail

test

execution

1. Manual testing

2. Scripted testing

3. Keyword-driven

testing

3 : Keyword-Driven Testing

high-level

test notation

19

test

scripts

system

model

SUT

TTCNTTCNTest

cases

pass fail

model-based

test

generation

test

execution

1. Manual testing

2. Scripted testing

3. Keyword-driven

testing

4. Model-based

testing

4 : Model-Based Testing

20

MBT: next step in test automation

• Automatic test generation

+ test execution + result analysis

• More, longer, and diversified test cases

more variation in test flow and in test data

• Model is precise and consistent test basis

unambiguous analysis of test results

• Test maintenance by maintaining models

improved regression testing

• Expressing test coverage

model coverage

customer profile coverage

MBT : Benefits

detecting more bugs

faster and cheaper

SUT

pass fail

model-based

test

generation

test

execution

model

22

MBT : State of the Art

• promising, emerging

• a number of successful applications

• many companies are experimenting

MBT : State of Practice

• lagging behind

Reasons

• technical

• tools

• organizational

• maturity of testing

• educational

•

MBT : State for the Future

(for High-tech Embedded Systems)

• ?

MBT : Benefits ?
But

If doing MBT is so smart,

why ain’t you rich ?

23

Model-Based

Verification, Validation, Testing,

24

Doing Something with Models

• Modelling making a model reveals errors

• Simulation go step-by-step through the model

• Model checking go through all states of the model

• Theorem proving prove theorems about the model

• Code generation executable code from the model

• Testing test an implementation for compliance

• Model learning generate a model from observation

Validation, Verification, Testing

SUT

model

informal world

real world

validation

model-based testing

verification

informal

requirements

25

formal world

26

formal
world

concrete
world

Verification is only as good as

the validity of the model on

which it is based

Verification and Testing

Model-based verification :

• formal manipulation

• prove properties

• performed on model

Model-based testing :

• experimentation

• show error

• concrete system

Testing can only show the

presence of errors, not their

absence

27

Code Generation from a Model

A model is more (less)

than code generation:

• views

• abstraction

• testing of aspects

• verification and validation

of aspects

28

? x (x >= 0)

! y

yx y = x

model of 𝒙

• specification of properties

rather than construction

• under-specification

• non-determinism

Code Generation from a Model

29

Model-Based Testing

The ioco Theory

for Labelled Transition Systems

30

Model-Based Testing Tools

MBT Tools

• AETG

• Agatha

• Agedis

• Autolink

• Axini Test Manager

• Conformiq

• Cooper

• Cover

• DTM

• fMBT

• Gst

• Gotcha

• Graphwalker

• JTorX

• MaTeLo

• MBTsuite

• M-Frame

• MISTA

• NModel

• OSMO

• ParTeG

• Phact/The Kit

• PyModel

• QuickCheck

• Reactis

• Recover

• RT-Tester

• SaMsTaG

• Smartesting CertifyIt

• Spec Explorer

• StateMate

• STG

• tedeso

• Temppo

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TestOptimal

• TGV

• Tigris

• TorX

• TorXakis

• T-Vec

• Tveda

• Uppaal-Cover

• Uppaal-Tron

•

31

MBT Tools ioco

• AETG

• Agatha

• Agedis

• Autolink

• Axini Test Manager

• Conformiq

• Cooper

• Cover

• DTM

• fMBT

• Gst

• Gotcha

• Graphwalker

• JTorX

• MaTeLo

• MBTsuite

• M-Frame

• MISTA

• NModel

• OSMO

• ParTeG

• Phact/The Kit

• PyModel

• QuickCheck

• Reactis

• Recover

• RT-Tester

• SaMsTaG

• Smartesting CertifyIt

• Spec Explorer

• StateMate

• STG

• tedeso

• Temppo

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TestOptimal

• TGV

• Tigris

• TorX

• TorXakis

• T-Vec

• Tveda

• Uppaal-Cover

• Uppaal-Tron

•

32

Yet Another MBT Tool : TorXakis

• AETG

• Agatha

• Agedis

• Autolink

• Axini Test Manager

• Conformiq

• Cooper

• Cover

• DTM

• fMBT

• Gst

• Gotcha

• Graphwalker

• JTorX

• MaTeLo

• MBTsuite

• M-Frame

• MISTA

• NModel

• OSMO

• ParTeG

• Phact/The Kit

• PyModel

• QuickCheck

• Reactis

• Recover

• RT-Tester

• SaMsTaG

• Smartesting CertifyIt

• Spec Explorer

• StateMate

• STG

• tedeso

• Temppo

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TestOptimal

• TGV

• Tigris

• TorX

• TorXakis

• T-Vec

• Tveda

• Uppaal-Cover

• Uppaal-Tron

•

33

TorXakis

Trends & Challenges

multi

disciplinarity

complexity

size
connectivity

systems-of-systems

change

variability

evolvability

uncertainty
34

heterogeneous

components

trends

&

challenges

connectivity
multi

disciplinarity

change

variability

evolvability

complexity

uncertainty

heterogeneous

components

35

MBT : Next Step Challenges

model

composition

abstraction

under
specification

uncertainty
nondeterminism

concurrency
parallelism

state +

complex data

statistical

usage

profiles

partial
specification

multiple

paradigms
integration

test

selection

Model

Based

Testing

36

Model-Based Testing

TorXakis

37

LTS

model

SUT
behaving as

input-enabled LTS

TTCNTTCN
Test

cases

pass fail

LTS

test

execution

ioco

test

generation

set of

LTS tests

SUT passes tests

SUT ioco model



sound   exhaustive

TorXakis : LTS & ioco

38

money

button1 button2

coffeetea

? n :: int

[[n  35]] -> [[n  50]] ->

with data

STS:

model

! n – 35 ! n – 50return return

STS : Symbolic Transition Systems

39

in ? n :: int

[[n ≠ 0]]

out ! m :: int

[[0 < m < n]]
out ! m :: int

[[0 < m < -n]]

semantics

out1

out2

out1

out1

out2
out3out2

out1

out1

out2
out3

in-2 in-1

in3
in2

in1
in-3

out1

STS : Symbolic Transition Systems

in4in-4

40

sioco : Symbolic ioco

41

system

model

SUT

TTCNTTCNTest

cases

pass fail

model-based

test

generation

test

execution

MBT Tools

SUT

system

model

pass fail

model-based

test

generation

test

execution

MBT : Ingredients

verdict

test result

analysis

requirements

ideas

SUT

test harness

TTCNTTCNtest

cases

42

off-line

MBT

system

model

pass fail

model

based

test

generation

+

execution

MBT : On-the-Fly

SUT

test harness verdict

test result

analysis

requirements

ideas

43

on-the-fly

MBT

system

model

pass fail

SUT

test harness verdict

test result

analysis

44

on-the-fly

MBT

TorXakis : An On-the Fly MBT Tool

socket

pass fail

Tic-Tac-Toe

selenium

Tic-Tac-Toe Rules

45

CHANDEF MyChannels

::= In ;

Out

ENDDEF

MODELDEF TicTacToe

::= CHAN IN In

CHAN OUT Out

BEHAVIOUR

In ‘X’ >-> Out ‘O’

ENDDEF

CNECTDEF Sut

::= CLIENTSOCK

CHAN OUT In HOST "localhost" PORT 7890

ENCODE In ‘X” -> ! ‘X’

CHAN IN Out HOST "localhost" PORT 7890

DECODE Out <- ? s

ENDDEF

model.txs

Models

• process-algebraic modelling language

• state-based control flow and complex data

• support for parallel, concurrent systems

• composing complex models from simple models

• non-determinism, uncertainty

• abstraction, under-specification

46

Tool

• on-line MBT tool

Under the hood

• SMT solvers for constraints and data

generation (via SMT-LIB: Z3, CVC4)

• testing theory: sioco on STS

• algebraic data-type definitions with rewriting

• Haskell

• LPE: Linear process equations

• Other MBT tools for testing (QuickCheck)

TorXakis : Overview

But

• research prototype

• poor usability

Current Research

• test selection

• variability, features

• modelling

• integration in process

https://github.com/TorXakis

Applications

• several high-tech

systems companies

• experimental level

62

Model-Based Testing

Applications

63

Electronic Passport

New Passport

• Machine Readable Passport (MRP, E-passport)

• with chip (JavaCard), contact-less

• storage of picture, fingerprints, iris scan,

• access to this data protected by encryption and a new protocol

• few years ago released in EU

Our job: testing of e-passports

• emphasis on access protocol

== exchange of request-respons messages

between passport and reader (terminal)

64

MBT for E-Passports : Model

65

SUT

TTCNTTCN
Test

cases

model-based

test

generation

test

execution

system

model

model-based

test tool

TorXakis

java

drivers

adapter

state-based
model

e-passport
& wireless

reader

pass fail

test runs

english
specifications

66

• Tested:

– Basic Access Control (BAC)

– Extended Access Control (EAC)

– Active Authentication (AA)

– Data Reading

• Tests up to about 2,000,000 test events

– complemented with manual tests

• No error found

MBT for E-Passports : Results

MBT in High-Tech Embedded Systems

67

Systems

• large, complex, system-of-systems

• complex state + complex data

• variability, product line

• not always up-to-date specifications

• compositional

• parallelism, under-specification

• uncertainty, non-determinism,

Testing

• state of practice:

keyword-driven test automation

• instrumentation: existing

keyword-driven test automation

• test selection via usage-profiles

SUT

• testing on simulated SUT:

virtual system, digital twin

Models

• how to make models ?

• who makes models? : Testers

• DSL (Domain Specific Languages)

• construct model from tests

MBT in High-Tech Embedded Systems

71

Model-Based Testing

Using TorXakis

model

SUT

pass fail

TorXakis

• MBT: the next step

in test automation ! ?

• The future of testing

is model-based ! ?

• If not, what is

the alternative ?

Model-Based Testing

Theory, Tools, Applications

?

https://github.com/TorXakis

