
Embedded Systems Programming - PA8001
http://bit.ly/15mmqf7

Lecture 12

Mohammad Mousavi
m.r.mousavi@hh.se

Center for Research on Embedded Systems
School of Information Science, Computer and Electrical Engineering



A Multi-Threaded Server

public class EchoServer {

public static void main(String[] args) {

int port = 4443;

ServerSocket serverSocket = new ServerSocket(port);

System.err.println("Started server on port " + port);

while (true) {

Socket clientSocket = serverSocket.accept();

System.err.println("Connected to a new client");

new Thread(new OneClientConnection(clientSocket)).

start();

}

}



OneClientConnection

public void run() {

in = new Scanner(new BufferedInputStream(clientSocket.getInputStream()));

out = new PrintWriter(clientSocket.getOutputStream(), true);

String s;

int i = 0;

while(in.hasNextLine()){

s = in.nextLine();

System.err.println(s);

out.println("["+i+"] " + s);

i++;

}

...

}



Services

Applications might need to do work even when the user is not
interacting with the app.

Services: to be created and started from other components by
passing Intents.
Run in the background and do not provide a UI.
May generate Notifications to start an Activity (with a UI)



Services or worker threads?

Worker thread: to increase interaction with the use, while
performing something time consuming

Service: to perform tasks in background with limited/no user
interaction



The echo client app

The launcher Activity

1. A button to start a
Service to handle a
TCP connection.

2. The Activity
finishes directly
after calling the
Service.

3. An Intent is passed
to the method that
starts the service.

4. All this is done in
the listener for the
button.

The Service

1. Runs in the main thread.

2. We have to define the methods that
are used by the system:

I void onCreate()
I int onStartCommand(Intent i,

int flags, int id)
I void onDestroy()

3. Must be terminated explicitely
I stopSelf
I or stopService(Intent i)



Services and threads

Activities and Services of an app run in the same main thread. If
we want to do things in other threads we have to do it explicitly.

We would also like the worker thread of a Service to be very much
like the main thread: doing nothing but waiting for messages to
work on.

Loopers, Handlers, HandlerThreads

1. Every thread in android can be associated with a Looper
(listens to messages)

2. We can associate Handlers to Loopers: they can receive
messages that are put in a queue and dealt with in order.

3. HandlerThreads are already associated to a looper.



A Service with a ServiceHandler

The following is the program structure we suggest for a Service
that can be asked to do several things.

Define a ServiceHandler inside your Service class

private final class ServiceHandler extends Handler{

public ServiceHandler(Looper looper){

super(looper);

}

// override handleMessage:

public void handleMessage(Message msg){

// Normally we would do some work here!

// switch on msg.what (integer)

// to distinguish between different things to do!

}

}



A Service with a ServiceHandler (ctd.)

onCreate starts a HandlerThread and associates a ServiceHandler to
its Looper

public class TheService extends Service{

private Looper mServiceLooper;

private ServiceHandler mServiceHandler;

public void onCreate() {

HandlerThread thread =

new HandlerThread("TheServiceWorkerThread",

Process.THREAD_PRIORITY_BACKGROUND);

thread.start();

mServiceLooper = thread.getLooper();

mServiceHandler = new ServiceHandler(mServiceLooper);

}



A Service with a ServiceHandler (ctd.)

onStartCommand just sends messages to the ServiceHandler

public class TheService extends Service{

public int onStartCommand(Intent intent,

int flags,

int startId) {

Message msg = mServiceHandler.obtainMessage();

msg.what = intent.getExtras().getString("WhatToDo"));

mServiceHandler.sendMessage(msg);

return START_STICKY;

}

}



How does a Service start an Activity?

Services that have done what was required of them and want the
app to start an Activity to interact with the user should not start
the Activity themselves! (the user might be using some other
app!).

Instead they should produce a Notification that the user can select
in order to start an Activity.



An application with two Activities and a Service

Check the code we distribute with this lecture!


	 
	Network communication
	Services
	Notifications

