# Towards a Quantitative Theory of Concurrent Probabilistic Systems

Franck van Breugel (joint work with Qiyi Tang)

August 27, 2016

# Table of Contents

#### Labelled Markov Chains

- Probabilistic bisimilarity
- Couplings
- Probabilistic bisimilarity distances

### Probabilistic automata

- Probabilistic bisimilarity
- Probabilistic bisimilarity distances

### 3 Computing probabilistic bisimilarity distances

- Simple stochastic games
- Simple policy iteration
- Trends

# **Behavioural Equivalences**





Rob van Glabbeek presented his linear timebranching time spectrum at the first CONCUR.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

# Rob van Glabbeek. The Linear Time-Branching Time Spectrum. CONCUR 1990.

# Model of Probabilistic System





Andrey Markov produced the first results for Markov chains in 1906.

< 글→ 글

 $\tau \in S \rightarrow \textit{Dist}(S)$ 

For each state *s*, the transitions of *s* are presented by a probability distribution  $\tau(s)$  on *S*.



イロト イ理ト イヨト

An equivalence relation  $\mathcal{R}$  is a *probabilistic bisimulation* if for all  $(s, t) \in R$ ,

- $\ell(s) = \ell(t)$  and
- $(\tau(s), \tau(t)) \in \overline{R}$ .

### Definition

*Probabilistic bisimilarity* is the largest probabilistic bisimulation.



Kim Larsen and Arne Skou introduced probabilistic bisimilarity in 1989.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Let  $R \subseteq S \times S$  be an equivalence relation. The *lifting* of R,  $\overline{R} \subseteq Dist(S) \times Dist(S)$ , is defined by

$$(\mu,
u)\inar{R}$$
 if  $\mu([s])=
u([s])$  for all  $s\in S$ 

Next, we will provide an alternative characterization of lifting.

A *coupling* of probability distributions  $\mu$  and  $\nu$  on *S* is a probability distribution  $\omega$  on  $S \times S$  with marginals  $\mu$  and  $\nu$ , that is, for all u,  $v \in S$ ,

$$\sum_{\mathbf{v}\in S} \omega(\mathbf{u},\mathbf{v}) = \mu(\mathbf{u})$$
$$\sum_{\mathbf{u}\in S} \omega(\mathbf{u},\mathbf{v}) = \nu(\mathbf{v})$$



Wolfgang Doeblin introduced the notion of a coupling in 1936 (published in 1938).

ヘロア 人間 アメヨア 人口 ア

The set of couplings of  $\mu$  and  $\nu$  is denoted by  $\Omega(\mu, \nu)$ .



æ

ヘロト 人間 とくほとくほとう



æ

ヘロト 人間 とくほとくほとう



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Alternative characterization of lifting

#### Theorem

Let  $R \subseteq S \times S$  be an equivalence relation.

 $(\mu, \nu) \in \overline{R} \text{ iff } \exists \omega \in \Omega(\mu, \nu) : \text{support}(\omega) \subseteq R$ 



Bengt Jonsson and Kim Larsen provided the alternative characterization in 1991.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

There are infinitely many couplings ( $r \in [0, \frac{1}{2}]$ ).



13/47

æ

(4) 日本 (1) 日本 (1)

The couplings form a convex polytope, which has finitely many vertices  $(r \in \{0, \frac{1}{2}\})$ .



(日本) 臣

14/47

### Theorem (TB 2016)

Let  $R \subseteq S \times S$  be an equivalence relation.

 $(\mu, \nu) \in \overline{R} \text{ iff } \exists \omega \in V(\Omega(\mu, \nu)) : \text{support}(\omega) \subseteq R$ 

ヘロト ヘヨト ヘヨト

#### Theorem (TB 2016)

Let  $R \subseteq S \times S$  be an equivalence relation.

 $(\mu, \nu) \in \overline{R} \text{ iff } \exists \omega \in V(\Omega(\mu, \nu)) : \text{support}(\omega) \subseteq R$ 

### Proof sketch

- Order the states *s*<sub>1</sub>,..., *s<sub>n</sub>* such that equivalent states are consecutive.
- Apply the North-West corner method.
- Prove some loop invariants.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

### Fundamental problem

Behavioural equivalences are not robust for systems with real-valued data.





Scott Smolka observed that probabilistic bisimilarity, the most well-known behavioural equivalence for probabilistic systems, is not robust in 1990.

★ E → < E → </p>

### Fundamental problem

Behavioural equivalences are not robust for systems with real-valued data.

#### **Robust alternative**

Instead of an equivalence relation

$$\sim: \boldsymbol{\mathcal{S}} \times \boldsymbol{\mathcal{S}} \rightarrow \{\text{true}, \text{false}\}$$

use a pseudometric

 $d: S \times S \rightarrow [0, 1].$ 

# Probabilistic bisimilarity



## $\operatorname{support}(\omega) \subseteq R$

18/47

æ

(4) 日本 (4) 日本 (5)

 $\langle \Box \rangle \langle \Box \rangle$ 

# Probabilistic bisimilarity



æ

# Probabilistic bisimilarity



### $\operatorname{support}(\omega) \subseteq R$

20/47

æ

不良 と 不良 とう

Let us represent the equivalence relation R with the following distance function.

$$r(s,t) = \left\{ egin{array}{cc} \mathsf{0} & ext{if } (s,t) \in R \ \mathsf{1} & ext{otherwise} \end{array} 
ight.$$

くヨ→

Let us represent the equivalence relation R with the following distance function.

$$r(s,t) = \begin{cases} 0 & \text{if } (s,t) \in R \\ 1 & \text{otherwise} \end{cases}$$

Then the condition

 $\operatorname{support}(\omega) \subseteq R$ 

is equivalent to

$$\sum_{u,v\in\mathcal{S}}\omega(u,v)\ r(u,v)=0$$

くヨ→

A D > A D >

# Quantitative generalization of probabilistic bisimilarity



minimize  $\sum_{u,v\in S} \omega(u,v) d(u,v)$ 

イロト 不得 トイヨト イヨト 二日

Probabilistic bisimilarity is the largest equivalence relation  $\sim$  such that  $s \sim t$  implies

- $\ell(s) = \ell(t)$  and
- $\exists \omega \in V(\Omega(\tau(s), \tau(t))) : \operatorname{support}(\omega) \subseteq R.$

イロト イヨト イヨト

Probabilistic bisimilarity is the largest equivalence relation  $\sim$  such that  $s \sim t$  implies

- $\ell(s) = \ell(t)$  and
- $\exists \omega \in V(\Omega(\tau(s), \tau(t))) : \operatorname{support}(\omega) \subseteq R.$

### Definition

The probabilistic bisimilarity pseudometric is the smallest  $d: S \times S \rightarrow [0, 1]$  such that

$$d(s,t) = \begin{cases} 1 & \text{if } \ell(s) \neq \ell(t) \\ \min_{\omega \in V(\Omega(\tau(s), \tau(t)))} \sum_{u, v \in S} \omega(u, v) d(u, v) & \text{otherwise} \end{cases}$$

イロト イ理ト イヨト

# Probabilistic bisimilarity pseudometric

Josee Desharnais, Vineet Gupta, Radha Jagadeesan and Prakash Panangaden. Metrics for Labeled Markov Systems. CONCUR 1999.



#### Theorem (DGJP 1999)

 $s \sim t$  if and only if d(s, t) = 0.

Let  $\mu, \nu \in Dist(S)$  and  $d : S \times S \rightarrow [0, 1]$ .  $\max_{f \in (S,d) \Rightarrow [0,1]} \sum_{s \in S} f(s) (\mu(s) - \nu(s))$   $= \min_{\omega \in \Omega(\mu,\nu)} \sum_{u,v \in S} \omega(u,v) d(u,v)$ 



Leonid Kantorovich first published this metric in 1942.

イロト 不良 トイヨト イヨト 三日

# Table of Contents

#### Labelled Markov Chains

- Probabilistic bisimilarity
- Couplings
- Probabilistic bisimilarity distances

### 2 Probabilistic automata

- Probabilistic bisimilarity
- Probabilistic bisimilarity distances

### 3 Computing probabilistic bisimilarity distances

- Simple stochastic games
- Simple policy iteration
- Trends

< ∃⇒

# Model of Concurrent Probabilistic System



### Probabilistic automaton



Roberto Segala studied probabilistic automata in his PhD thesis.

イロト 不得 トイヨト イヨト 二日



Instead of  $(s, \mu) \in \rightarrow$ , we write  $s \rightarrow \mu$ .



э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

An equivalence relation  $\mathcal{R}$  is a *probabilistic bisimulation* if for all  $(s, t) \in R$ ,

- $\ell(s) = \ell(t)$  and
- for all  $s \to \mu$  there exists  $t \to \nu$  such that  $(\mu, \nu) \in \overline{R}$ .

Roberto Segala and Nancy Lynch. Probabilistic Simulations for Probabilistic Processes. CONCUR 1994.



Probabilistic bisimilarity is the largest equivalence relation  $\sim$  such that  $s \sim t$  implies

- $\ell(s) = \ell(t)$  and
- $\exists \omega \in V(\Omega(\tau(s), \tau(t))) : \operatorname{support}(\omega) \subseteq R.$

### Definition

The probabilistic bisimilarity pseudometric is the smallest  $d: S \times S \rightarrow [0, 1]$  such that

$$d(s,t) = \begin{cases} 1 & \text{if } \ell(s) \neq \ell(t) \\ \min_{\omega \in V(\Omega(\tau(s), \tau(t)))} \sum_{u, v \in S} \omega(u, v) d(u, v) & \text{otherwise} \end{cases}$$

イロト イヨト イヨト

# Probabilistic automaton

### Definition

*Probabilistic bisimilarity* is the largest equivalence relation  $\sim$  such that  $s \sim t$  implies

• 
$$\ell(s) = \ell(t)$$
 and

• 
$$\forall s \rightarrow \mu : \exists t \rightarrow \nu : \exists \omega \in V(\Omega(\mu, \nu) : \operatorname{support}(\omega) \subseteq R.$$

#### Definition

The probabilistic bisimilarity pseudometric is the smallest  $d: S \times S \rightarrow [0, 1]$  such that if  $\ell(s) \neq \ell(t)$ 

$$d(s,t) = \begin{cases} \max \left\{ \max \min_{s \to \mu} \min_{t \to \nu} \min_{\omega \in V(\Omega(\mu,\nu))} \sum_{u,v \in S} \omega(u,v) d(u,v), \\ \max \min_{t \to \nu} \min_{s \to \mu} \min_{\omega \in V(\Omega(\mu,\nu))} \sum_{u,v \in S} \omega(u,v) d(u,v) \right\} \end{cases}$$

# Probabilistic bisimilarity pseudometric

Yuxin Deng, Tom Chothia, Catuscia Palamidessi and Jun Pang. Metrics for Action-labelled Quantitative Transition Systems. QAPL 2005.



#### Theorem (DCPP 2005)

 $s \sim t$  if and only if d(s, t) = 0.

Let 
$$A, B \subseteq S$$
 and  $d : S \times S \rightarrow [0, 1]$ .  

$$\max \left\{ \max_{s \in A} \min_{t \in B} d(s, t), \max_{t \in B} \min_{s \in A} d(s, t) \right\}$$



Felix Hausdorff introduced this metric in 1914.

<ロ> <回> <回> < 回> < 回> < 回> < 回> < 回</td>

# Table of Contents

#### Labelled Markov Chains

- Probabilistic bisimilarity
- Couplings
- Probabilistic bisimilarity distances
- 2 Probabilistic automata
  - Probabilistic bisimilarity
  - Probabilistic bisimilarity distances
- Computing probabilistic bisimilarity distances
  - Simple stochastic games
  - Simple policy iteration
  - Trends

< ∃→

#### Question

How to compute the probabilistic bisimilarity distances for a probabilistic automaton?

★ E → ★ E → .

# Simple stochastic game (SSG)





Anne Condon was the first to study simple stochastic games from a computational point of view in 1992.

<ロ> <四> <四> <四> <三</td>

# Values of a SSG

### Definition

The *value* of a vertex is the probability that the max player wins the game (reaches 1) provided that both players use optimal strategies (the min player tries not to reach 1).



37/47

For each probabilistic automaton we construct a corresponding simple stochastic game such that

PASSGdistancevaluealgorithmsimple policy iteration



Ronald Howard introduced policy iteration in 1958.

ヘロアス 雪 アメ 回 ア・

With every pair of states (s, t) of the probabilistic automaton we associate a vertex of the simple stochastic game.

If  $\ell(s) \neq \ell(t)$  then d(s, t) = 1.



Image: A matrix

\* E > \* E >

Otherwise,

ヘロト 人間 とくほ とくほとう

æ

40/47

Otherwise,

<ロト < 回 > < 注 > < 注 > .

æ

Otherwise,

æ

<ロト < 回 > < 注 > < 注 > .

Otherwise,

æ

<ロト < 回 > < 注 > < 注 > .

### Theorem

lf

- vertices have value zero iff they are zero sinks and
- vertices have value one iff they are one sinks

then

• simple policy iteration computes a globally optimal strategy.

### Theorem (DGJP 1999 and BEM 2000)

Distance zero can be decided in polynomial time.

Christel Baier, Bettina Engelen and Mila Majster-Cederbaum. Deciding Bisimilarity and Similarity for Probabilistic Processes. JCSS 2000.

### Theorem (TB 2016)

Distance one can be decided in polynomial time.

イロト イ理ト イヨト

With every pair of states (s, t) of the probabilistic automaton we associate a vertex of the simple stochastic game.

If d(s, t) = 0

### 0

If d(s, t) = 1



イロト イ理ト イヨト

- Games can be used to characterize and compute behavioural pseudometrics.
- Decide the behavioural equivalence before computing the behavioural pseudometric.