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Behavioural Equivalences

Rob van Glabbeek pre-

sented his linear time-

branching time spectrum

at the first CONCUR.

Rob van Glabbeek. The Linear Time-Branching Time
Spectrum. CONCUR 1990.

Franck van Breugel (joint work with Qiyi Tang) Concurrent Probabilistic Systems 3 / 47



Model of Probabilistic System
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Labelled Markov chain

Andrey Markov pro-

duced the first results for

Markov chains in 1906.
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Transitions

τ ∈ S → Dist(S)

For each state s, the transitions of s are presented by a
probability distribution τ(s) on S.

u v

s
1
2

1
2

τ(s)(w) =


1
2 if w = u
1
2 if w = v
0 otherwise
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Probabilistic bisimulation

Definition
An equivalence relation R is a probabilistic
bisimulation if for all (s, t) ∈ R,

`(s) = `(t) and
(τ(s), τ(t)) ∈ R̄.

Definition
Probabilistic bisimilarity is the largest
probabilistic bisimulation.

Kim Larsen and Arne

Skou introduced

probabilistic bisimilarity

in 1989.
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Lifting

Definition
Let R ⊆ S × S be an equivalence relation. The lifting of R,
R̄ ⊆ Dist(S)× Dist(S), is defined by

(µ, ν) ∈ R̄ if µ([s]) = ν([s]) for all s ∈ S

Next, we will provide an alternative characterization of lifting.
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Coupling

Definition
A coupling of probability distributions µ and ν
on S is a probability distribution ω on S × S
with marginals µ and ν, that is, for all u,
v ∈ S, ∑

v∈S

ω(u, v) = µ(u)∑
u∈S

ω(u, v) = ν(v)

The set of couplings of µ and ν is denoted by
Ω(µ, ν).

Wolfgang Doeblin intro-

duced the notion of a

coupling in 1936 (pub-

lished in 1938).
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Coupling
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Coupling
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Alternative characterization of lifting

Theorem
Let R ⊆ S × S be an equivalence relation.

(µ, ν) ∈ R̄ iff ∃ω ∈ Ω(µ, ν) : support(ω) ⊆ R

Bengt Jonsson and

Kim Larsen pro-

vided the alternative

characterization in 1991.
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Coupling

There are infinitely many couplings (r ∈ [0, 1
2 ]).
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Coupling

The couplings form a convex polytope, which has finitely many
vertices (r ∈ {0, 1

2}).
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Alternative characterization of lifting

Theorem (TB 2016)
Let R ⊆ S × S be an equivalence relation.

(µ, ν) ∈ R̄ iff ∃ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ R

Proof sketch
Order the states s1, . . . , sn such that equivalent states are
consecutive.
Apply the North-West corner method.
Prove some loop invariants.
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Behavioural pseudometric

Fundamental problem
Behavioural equivalences are not robust for
systems with real-valued data.

1
2

1
2

1 1

0.51 0.49

1 1

Scott Smolka observed

that probabilistic

bisimilarity, the most

well-known behavioural

equivalence for proba-

bilistic systems, is not

robust in 1990.
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Behavioural pseudometric

Fundamental problem
Behavioural equivalences are not robust for systems with
real-valued data.

Robust alternative
Instead of an equivalence relation

∼ : S × S → {true, false}

use a pseudometric

d : S × S → [0,1].
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Probabilistic bisimilarity
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Probabilistic bisimilarity
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Probabilistic bisimilarity
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Probabilistic bisimilarity

Let us represent the equivalence relation R with the following
distance function.

r(s, t) =

{
0 if (s, t) ∈ R
1 otherwise

Then the condition
support(ω) ⊆ R

is equivalent to ∑
u,v∈S

ω(u, v) r(u, v) = 0

Franck van Breugel (joint work with Qiyi Tang) Concurrent Probabilistic Systems 21 / 47



Probabilistic bisimilarity

Let us represent the equivalence relation R with the following
distance function.

r(s, t) =

{
0 if (s, t) ∈ R
1 otherwise

Then the condition
support(ω) ⊆ R

is equivalent to ∑
u,v∈S

ω(u, v) r(u, v) = 0

Franck van Breugel (joint work with Qiyi Tang) Concurrent Probabilistic Systems 21 / 47



Quantitative generalization of probabilistic bisimilarity
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minimize
∑

u,v∈S

ω(u, v) d(u, v)

Franck van Breugel (joint work with Qiyi Tang) Concurrent Probabilistic Systems 22 / 47



Quantitative generalization of probabilistic bisimilarity

Definition
Probabilistic bisimilarity is the largest equivalence relation ∼
such that s ∼ t implies

`(s) = `(t) and
∃ω ∈ V (Ω(τ(s), τ(t))) : support(ω) ⊆ R.

Definition
The probabilistic bisimilarity pseudometric is the smallest
d : S × S → [0,1] such that

d(s, t) =


1 if `(s) 6= `(t)

min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) d(u, v) otherwise
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Probabilistic bisimilarity pseudometric

Josee Desharnais, Vineet Gupta, Radha Jagadeesan and
Prakash Panangaden. Metrics for Labeled Markov Systems.
CONCUR 1999.

Theorem (DGJP 1999)

s ∼ t if and only if d(s, t) = 0.
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Kantorovich metric

Let µ, ν ∈ Dist(S) and d : S × S → [0,1].

max
f∈(S,d)---<[0,1]

∑
s∈S

f (s) (µ(s)− ν(s))

= min
ω∈Ω(µ,ν)

∑
u.v∈S

ω(u, v) d(u, v)
Leonid Kantorovich first

published this metric in

1942.
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Model of Concurrent Probabilistic System
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Probabilistic automaton

Roberto Segala studied

probabilistic automata in

his PhD thesis.
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Transitions

→ ⊆ S × Dist(S)

Instead of (s, µ) ∈ →, we write s → µ.

u v

s

1
2

1
2

µ(w) =


1
2 if w = u
1
2 if w = v
0 otherwise
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Probabilistic bisimulation

Definition
An equivalence relation R is a probabilistic bisimulation if for all
(s, t) ∈ R,

`(s) = `(t) and
for all s → µ there exists t → ν such that (µ, ν) ∈ R̄.

Roberto Segala and Nancy Lynch. Probabilistic Simulations for
Probabilistic Processes. CONCUR 1994.
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Labelled Markov chain

Definition
Probabilistic bisimilarity is the largest equivalence relation ∼
such that s ∼ t implies

`(s) = `(t) and
∃ω ∈ V (Ω(τ(s), τ(t))) : support(ω) ⊆ R.

Definition
The probabilistic bisimilarity pseudometric is the smallest
d : S × S → [0,1] such that

d(s, t) =


1 if `(s) 6= `(t)

min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) d(u, v) otherwise
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Probabilistic automaton

Definition
Probabilistic bisimilarity is the largest equivalence relation ∼
such that s ∼ t implies

`(s) = `(t) and
∀s → µ : ∃t → ν : ∃ω ∈ V (Ω(µ, ν) : support(ω) ⊆ R.

Definition
The probabilistic bisimilarity pseudometric is the smallest
d : S × S → [0,1] such that if `(s) 6= `(t)

d(s, t) =


max

max
s→µ

min
t→ν

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) d(u, v),

max
t→ν

min
s→µ

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) d(u, v)


Franck van Breugel (joint work with Qiyi Tang) Concurrent Probabilistic Systems 31 / 47



Probabilistic bisimilarity pseudometric

Yuxin Deng, Tom Chothia, Catuscia Palamidessi and Jun Pang.
Metrics for Action-labelled Quantitative Transition Systems.
QAPL 2005.

Theorem (DCPP 2005)

s ∼ t if and only if d(s, t) = 0.
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Hausdorff metric

Let A, B ⊆ S and d : S × S → [0,1].

max
{

max
s∈A

min
t∈B

d(s, t),max
t∈B

min
s∈A

d(s, t)
}

Felix Hausdorff intro-

duced this metric in

1914.
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Algorithm

Question
How to compute the probabilistic bisimilarity distances for a
probabilistic automaton?
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Simple stochastic game (SSG)

0 1

avg avg avg avg

maxmax maxmax

minmin

Anne Condon was the

first to study simple

stochastic games from

a computational point of

view in 1992.
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Values of a SSG

Definition
The value of a vertex is the probability that the max player wins
the game (reaches 1) provided that both players use optimal
strategies (the min player tries not to reach 1).

0 1

avg avg avg avg

maxmax maxmax

minmin
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From PAs to SSGs

For each probabilistic automaton we con-
struct a corresponding simple stochastic
game such that

PA SSG
distance value
algorithm simple policy iteration

Ronald Howard intro-

duced policy iteration in

1958.
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From PAs to SSGs

With every pair of states (s, t) of the probabilistic automaton we
associate a vertex of the simple stochastic game.

If `(s) 6= `(t) then d(s, t) = 1.

1
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From PAs to SSGs

Otherwise,

d(s, t) =


max

max
s→µ

min
t→ν

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) d(u, v),

max
t→ν

min
s→µ

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) d(u, v)


st

tµ1 · · · tµm sν1 · · · sνm
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From PAs to SSGs

Otherwise,

d(s, t) =


max

max
s→µ

min
t→ν

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) d(u, v),

max
t→ν

min
s→µ

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) d(u, v)


tµ

µν1 · · · µνn
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From PAs to SSGs

Otherwise,

d(s, t) =


max

max
s→µ

min
t→ν

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) d(u, v),

max
t→ν

min
s→µ

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) d(u, v)


µν

ω1 · · · ωp
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From PAs to SSGs

Otherwise,

d(s, t) =


max

max
s→µ

min
t→ν

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) d(u, v),

max
t→ν

min
s→µ

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) d(u, v)


ω

s1t1 · · · sntm
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Simple policy iteration

Theorem
If

vertices have value zero iff they are zero sinks and
vertices have value one iff they are one sinks

then
simple policy iteration computes a globally optimal strategy.
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Distance zero and one

Theorem (DGJP 1999 and BEM 2000)
Distance zero can be decided in polynomial time.

Christel Baier, Bettina Engelen and Mila Majster-Cederbaum.
Deciding Bisimilarity and Similarity for Probabilistic Processes.
JCSS 2000.

Theorem (TB 2016)
Distance one can be decided in polynomial time.
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From PAs to SSGs

With every pair of states (s, t) of the probabilistic automaton we
associate a vertex of the simple stochastic game.

If d(s, t) = 0

0

If d(s, t) = 1

1
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Trends

Games can be used to characterize and compute
behavioural pseudometrics.
Decide the behavioural equivalence before computing the
behavioural pseudometric.
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