
Automated Test Generation for Transformations using
Symbolic Execution∗

[Extended Abstract]

Ahmad Salim Al-Sibahi1

IT University of Copenhagen, Copenhagen, Denmark
asal@itu.dk

1 Introduction
Transformations appear in most modern IT systems today, from system integration and adap-
tation, model translations in model-driven development to code optimization, refactoring and
code generation. For example, consider the Rename-Field [3] refactoring presented in Figure 1,
which aims to not only rename a field but also correctly update all references to it.

class Account {
 Money credit;
 MovieList purchases;
 …
 membershipLevel() {
 … this.credit …
 }
}

class PurchaseView {
 view() {
 Account a; Movie m;
 … a.credit … m.credit …
 }
}

rename credit
to balance in
Account

class Account {
 Money balance;
 MovieList purchases;
 …
 membershipLevel() {
 … this.balance …
 }
}

class PurchaseView {
 view() {
 Account a; Movie m;
 … a.balance … m.credit …
 }
}

Figure 1: The Rename-Field refactoring: rename the definition of credit to balance and update all
references accordingly.

Testing such transformations is hard and few solutions exist for generating good tests au-
tomatically [4]. Existing test generators [9, 7] do not support high-level transformations, and
existing solutions rely on black-box generators [1] disregarding the code under test.

2 Method
Our primary goal is to develop a technique that enables effectively generating tests for trans-
formations. In order to do so we:

• Develop a small formal transformation language, in the style of IMP, called TRON which
supports high-level constructs such as deep matching on structures, first-class set oper-
ations and ownership links. An simplified version of the Rename-Field refactoring in
TRON is presented in Figure 2; the deep matching foreach-loop on line 6 gets all object
references of type FieldAccessExpr in the input class.

• Significantly extend existing symbolic execution techniques [2] to handle transformations
written in TRON, which is used to build a white-box test generation tool.

∗Supported by The Danish Council for Independent Research (grant no. 0602-02327B) under the Sapere
Aude scheme, project VARIETE.

• Build a white-box test generator which is based on the develop symbolic execution tech-
nique.

name : String
…

Class
…

Method

name : String
…

Field

FieldAccessExpr

0.. * fields
target

0..* methods

type

body

…
Expr

field

…

ThisExpr

(a) Abstract syntax for simple object-
oriented programs

1 input: class: Class, old_field: Field, new_field: Field
2 precondition: old_field ∈ class.fields ∧ new_field /∈ class.fields
3
4 // the refactoring program
5 class.fields := (class.fields \ old_field) ∪ new_field
6 foreach faexpr ∈ class match* FieldAccessExpr do
7 if faexpr.field = old_field ∧
8 faexpr.target.type = class then
9 faexpr.field := new_field

10 else skip

(b) A Refactoring in TRON

Figure 2: A simplified version of the rename-field refactoring example in TRON

3 Evaluation Results
We implemented the white-box test generator in Scala, and ran it on a series of TRON pro-
grams consisting of toy transformation and four simplified refactorings: Rename-Field, Rename-
Method, Replace-Delegation-with-Inheritance and Extract-Superclass. On the toy transforma-
tion, our white-box test generation tool achieved 100% branch coverage, beating the black-box
test generation tool that we used as baseline (having coverage 20%-66.6%, except for one where
it did achieve full coverage). Our white-box test generation tool did well on the refactorings as
well, beating the baseline black-box test generation tool each time and achieving full coverage
in two out of the four refactorings. Performance-wise the white-box test generation tool was
between 2.2×–31.2× slower than the black-box test generation tool, which we believe is rea-
sonable due to the more work required but still leaves some room for optimisations in future
work.

4 Beyond TRON
Like IMP, TRON is primarily used as a vehicle for the development of formal techniques and is
not meant to be used to write realistic programs. In the future, we hope to use our experiences
and developed techniques to work with a more realistic high-level transformation language or
framework with similar features, for example ATL [5], Uniplate [6] or Kiama [8].

References
[1] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing of refactoring

engines. In FSE 2007, Dubrovnik, Croatia, September 3-7, 2007, pages 185–194, 2007.
[2] Xianghua Deng, Jooyong Lee, and Robby. Efficient and formal generalized symbolic execution.

Autom. Softw. Eng., 19(3):233–301, 2012.
[3] Martin Fowler. Refactoring - Improving the Design of Existing Code. Addison Wesley object

technology series. Addison-Wesley, 1999.

[4] Milos Gligoric, Farnaz Behrang, Yilong Li, Jeffrey Overbey, Munawar Hafiz, and Darko Marinov.
Systematic testing of refactoring engines on real software projects. In ECOOP 2013, France, July
1-5, 2013, pages 629–653, 2013.

[5] Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Satellite Events at the
MoDELS 2005 Conference, Montego Bay, Jamaica, October 2-7, 2005, pages 128–138, 2005.

[6] Neil Mitchell and Colin Runciman. Uniform boilerplate and list processing. In Haskell 2007,
Freiburg, Germany, September 30, 2007, pages 49–60, 2007.

[7] Adrián Riesco. Test-case generation for maude functional modules. In WADT 2010, Etelsen,
Germany, July 1-4, 2010, pages 287–301, 2010.

[8] AnthonyM. Sloane. Lightweight language processing in kiama. In JoÃčoM. Fernandes, Ralf LÃďm-
mel, Joost Visser, and JoÃčo Saraiva, editors, Generative and Transformational Techniques in Soft-
ware Engineering III, volume 6491 of Lecture Notes in Computer Science, pages 408–425. Springer
Berlin Heidelberg, 2011.

[9] Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. Test input generation with java
pathfinder. In ISSTA 2004, Boston, Massachusetts, USA, July 11-14, 2004, pages 97–107, 2004.

	Introduction
	Method
	Evaluation Results
	Beyond TRON

