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1 Introduction
Transformations appear in most modern IT systems today, from system integration and adap-
tation, model translations in model-driven development to code optimization, refactoring and
code generation. For example, consider the Rename-Field [3] refactoring presented in Figure 1,
which aims to not only rename a field but also correctly update all references to it.

class Account {
  Money credit;
  MovieList purchases;
  …
  membershipLevel() {
    … this.credit …
  }
}

class PurchaseView {
  view() {
    Account a; Movie m;
    … a.credit … m.credit …
  }
}

rename credit 
to balance in 
Account

class Account {
  Money balance;
  MovieList purchases;
  …
  membershipLevel() {
    … this.balance …
  }
}

class PurchaseView {
  view() {
    Account a; Movie m;
    … a.balance … m.credit …
  }
}

Figure 1: The Rename-Field refactoring: rename the definition of credit to balance and update all
references accordingly.

Testing such transformations is hard and few solutions exist for generating good tests au-
tomatically [4]. Existing test generators [9, 7] do not support high-level transformations, and
existing solutions rely on black-box generators [1] disregarding the code under test.

2 Method
Our primary goal is to develop a technique that enables effectively generating tests for trans-
formations. In order to do so we:

• Develop a small formal transformation language, in the style of IMP, called TRON which
supports high-level constructs such as deep matching on structures, first-class set oper-
ations and ownership links. An simplified version of the Rename-Field refactoring in
TRON is presented in Figure 2; the deep matching foreach-loop on line 6 gets all object
references of type FieldAccessExpr in the input class.

• Significantly extend existing symbolic execution techniques [2] to handle transformations
written in TRON, which is used to build a white-box test generation tool.

∗Supported by The Danish Council for Independent Research (grant no. 0602-02327B) under the Sapere
Aude scheme, project VARIETE.



• Build a white-box test generator which is based on the develop symbolic execution tech-
nique.
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(a) Abstract syntax for simple object-
oriented programs

1 input: class: Class, old_field: Field, new_field: Field
2 precondition: old_field ∈ class.fields ∧ new_field /∈ class.fields
3
4 // the refactoring program
5 class.fields := (class.fields \ old_field) ∪ new_field
6 foreach faexpr ∈ class match* FieldAccessExpr do
7 if faexpr.field = old_field ∧
8 faexpr.target.type = class then
9 faexpr.field := new_field

10 else skip

(b) A Refactoring in TRON

Figure 2: A simplified version of the rename-field refactoring example in TRON

3 Evaluation Results
We implemented the white-box test generator in Scala, and ran it on a series of TRON pro-
grams consisting of toy transformation and four simplified refactorings: Rename-Field, Rename-
Method, Replace-Delegation-with-Inheritance and Extract-Superclass. On the toy transforma-
tion, our white-box test generation tool achieved 100% branch coverage, beating the black-box
test generation tool that we used as baseline (having coverage 20%-66.6%, except for one where
it did achieve full coverage). Our white-box test generation tool did well on the refactorings as
well, beating the baseline black-box test generation tool each time and achieving full coverage
in two out of the four refactorings. Performance-wise the white-box test generation tool was
between 2.2×–31.2× slower than the black-box test generation tool, which we believe is rea-
sonable due to the more work required but still leaves some room for optimisations in future
work.

4 Beyond TRON
Like IMP, TRON is primarily used as a vehicle for the development of formal techniques and is
not meant to be used to write realistic programs. In the future, we hope to use our experiences
and developed techniques to work with a more realistic high-level transformation language or
framework with similar features, for example ATL [5], Uniplate [6] or Kiama [8].
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