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Abstract. The JAVA CARD transaction mechanism can ensure that a
sequence of statements either is executed to completion or is not ex-
ecuted at all. Transactions make verification of JAVA CARD programs
considerably more difficult, because they cannot be formalised in a logic
based on pre- and postconditions. The KeY system includes an interac-
tive theorem prover for JAVA CARD source code that models the full JAVA

CARD standard including transactions. Based on a case study of realistic
size we show the practical difficulties encountered during verification of
safety properties. We provide an assessment of current JAVA CARD source
code verification, and we make concrete suggestions towards overcoming
the difficulties by design for verification. The main conclusion is that
largely automatic verification of realistic JAVA CARD software is possible
provided that it is designed with verification in mind from the start.

1 Introduction

As JAVA CARD technology is picking up speed it becomes more and more inter-
esting to employ formal analysis techniques in order to ensure that JAVA CARD

applications work as intended. Formal approaches to JAVA CARD application de-
velopment encompass a wide spectrum from byte code to source code, from fully
automated to highly interactive, and from abstract to fully concrete semantics
(see Section 5 for a brief overview).

Our work is aimed at JAVA CARD source code verification with full modelling
of all semantic aspects. This includes the JAVA CARD transaction mechanism that
ensures a sequence of statements either being executed to completion or not being
executed at all. The underlying technology, described in Section 2.2, is theorem
proving in an expressive logic, in which programs and their requirements are
formalised. Fully automatic inference in this context is in general unachievable,
but one goal of the presented work was to find out just how far automation
reaches.

The experiments described in this paper were made with the KeY theorem
prover, which is an interactive verification system for JAVA CARD featuring a
complete formalisation of atomic transactions [4]. It is part of the KeY system
[1], an integrated tool for informal and formal development of object-oriented
software described in Section 2.1. This paper makes the following contributions:
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– An experience report about the verification of parts of a JAVA CARD elec-
tronic purse application (Demoney) of realistic complexity [23]. The code
includes atomic transactions. To our best knowledge, this is the first report
on verification of JAVA CARD source programs with transactions without
any simplification or abstraction. The case study and the experiments are
described in Section 3.

– An assessment of current source code verification technology: what can be
automatically proven in terms of LoC, complexity, etc.? Which desirable re-
quirements can be expressed and which not? This is discussed in Section 4.1.

– An analysis of the limitations of current technology and how they can be
overcome. We explain why the Demoney case study had to be partially
refactored to make verification feasible. In particular, we make concrete sug-
gestions towards overcoming the difficulties by design for verification in Sec-
tion 4.2.

The main conclusion we draw in this paper is that largely automatic verification
of realistic JAVA CARD software is in the realm of the possible, but it is essential
to move from post hoc verification to a more aggressive approach, where software
is designed with verification in mind from the start.

2 Background

2.1 The KeY Project

The work presented in this paper is part of the KeY project1 [1]. The main goals
of KeY are to (1) provide deductive verification for a real world programming
language and to (2) integrate formal methods into industrial software develop-
ment processes. For the first goal a deductive verification tool, the KeY Prover,
has been developed. The verification is based on a specifically tailored version of
Dynamic Logic—JAVA CARD Dynamic Logic (JAVA CARD DL), which supports
most of sequential JAVA including the full JAVA CARD language specification.
For the second goal we enhance a commercial CASE tool with functionality for
formal specification and deductive verification. The design and specification lan-
guages of our choice are respectively UML (Unified Modelling Language) and
OCL (Object Constraint Language), which is part of the UML standard. The
KeY system translates OCL specifications into JAVA CARD DL formulae, whose
validity can then be proved with the KeY Prover. All this is tightly integrated
into a CASE tool, which makes formal verification as transparent as possible to
the untrained user.

Of course, the use of OCL is not mandatory: logically savvy users of the KeY
system can write their proof obligations directly in JAVA CARD DL and use its
full expressive power. As we see later, this is even relatively straightforward.

1 http://www.key-project.org
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2.2 JAVA CARD Dynamic Logic

We give a very brief introduction to JAVA CARD DL. We are not going to present
or explain any of its sequent calculus rules. Dynamic Logic [28, 17] can be seen
as an extension of Hoare logic. It is a first-order modal logic with parametric
modalities [p] and 〈p〉 for every program p (we allow p to be any sequence of legal
JAVA CARD statements). In the Kripke semantics of Dynamic Logic the worlds
are identified with execution states of programs. A state s′ is accessible from
state s via p, if p terminates with final state s′ when started in state s.

The formula [p]φ expresses that φ holds in all final states of p, and 〈p〉φ
expresses that φ holds in some final state of p. In versions of DL with a non-
deterministic programming language there can be several final states, but JAVA

CARD programs are deterministic, so there is exactly one final state (when p
terminates) or no final state (when p does not terminate). The formula φ→ 〈p〉ψ
is valid if, for every state s satisfying precondition φ, a run of the program p
starting in s terminates, and in the terminating state the postcondition ψ holds.
The formula φ→ [p]ψ expresses the same, except that termination of p is not
required, that is ψ needs only to hold if p terminates.

JAVA CARD DL is axiomatised in a sequent calculus to be used in deductive
verification of JAVA CARD programs. The detailed description of the calculus can
be found in [2]. The calculus covers all features of JAVA CARD, such as exceptions,
complex method calls, atomic transactions (see below), JAVA arithmetic. The full
JAVA CARD DL sequent calculus is implemented in the KeY Prover. The prover
itself is implemented in JAVA. The calculus is implemented by means of so-called
taclets [3], that avoid rules being hard coded into the prover. Instead, rules can
be dynamically added to the prover. As a consequence, one can, for example,
use different versions of arithmetic during a proof: idealised arithmetic, where all
integer types are infinite and do not overflow, or JAVA arithmetic, where integer
types are bounded and exhibit overflow behaviour [6].

To sum up the description of JAVA CARD DL and to give the reader an im-
pression of concrete JAVA CARD DL formulae, we present a simple JAVA CARD DL
proof obligation:

card.balance
.= b ` 〈card.charge(amount);〉 card.balance .= b+ amount

It says that if the card object’s balance attribute is equal to b in the initial
state, then the execution of method charge with argument amount terminates
normally (no exception thrown) and afterwards the card object’s initial balance
is increased by amount. The validity of this proof obligation under JAVA integer
semantics depends on whether charge() accounts for overflow, the type of the
+ operator, etc.

2.3 Strong Invariants

While working on one of the JAVA CARD case studies [27] it became apparent
that the specification semantics based on the initial and final states of a program
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is not enough to specify and verify some JAVA CARD safety properties. It turned
out that the JAVA CARD applet in question was not “rip-out safe”: it is possible
to destroy the applet’s functionality by removing (ripping out) the JAVA CARD

device from the card reader (terminal) while the applet on the card executes.
As a result of this the applet’s memory may become corrupted and left in an
undefined state, causing malfunctioning of the applet.

To avoid such errors one has to be able to specify and verify the property
that a certain invariant on the objects’ data is maintained at any time during
applet execution and, in particular, in case of abrupt termination. Usually, class
invariants (in OCL and elsewhere) are interpreted with respect to pre/post state
semantics, that is, if the invariant holds before a method is executed then it holds
again after the execution of a method. This semantics does not suffice to ensure
properties of data in intermediate states during method’s execution. To solve
this problem, we introduced strong invariants, which allow to specify properties
about all intermediate states of a program.2

For example, the following strong invariant (expressed in pseudo OCL) says
that we do not allow partially initialised PersonalData objects at any point in
our program. In case the program is abruptly terminated we should end up with
either a fully initialised object or an uninitialised (empty) one:

context PersonalData throughout:
not self.empty implies
self.firstName <> null and self.lastName <> null and self.age > 0

To introduce the notion of a strong invariant it was necessary to extend
the JAVA CARD DL with a new modal operator [[·]] (“throughout”), which closely
corresponds to Temporal Logic’s 2 operator. In the extended logic, the semantics
of a program is a sequence of all states the execution passes through when started
in the current state (its trace). Using [[·]], it is possible to specify properties of
intermediate states in traces of terminating and non-terminating programs. And
such properties (typically strong invariants and safety constraints) can be verified
using the JAVA CARD DL calculus extended with additional sequent rules for the
“throughout” modality [4].

2.4 JAVA CARD Atomic Transactions

There is one particular aspect of JAVA CARD that makes the “throughout” ex-
tension considerably more complicated than expected, namely, the JAVA CARD

transaction mechanism. The transaction mechanism allows a programmer to en-
force atomicity of sequences of JAVA CARD statements. It is typically used to
ensure consistency of related data that have to be updated simultaneously.

The memory model of JAVA CARD differs somewhat from JAVA’s memory
model [12, 31]. In smart cards there are two kinds of writable memory: persistent

2 In extended static checking a closely related concept called object invariants is used
[21]. The semantics of OCL invariants is interpreted in the strong sense in [34], where
a temporal extension of OCL is introduced.
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memory (EEPROM), which is preserved between card sessions, and transient
memory (RAM), whose contents disappears when power loss occurs, for example,
when the card is removed from the reader. Hence, every memory location in
JAVA CARD (variable or object field) is either persistent or transient. The JAVA

CARD language specification gives the following rules (slightly simplified for this
presentation): all objects (including the reference to the currently running applet,
this, and arrays) are created in persistent memory. Therefore, in JAVA CARD

assignments such as “o.attr = 2;”, “this.a = 3;”, and “arr[i] = 4;” all
have a permanent character; that is, the assigned values will be kept after the
card loses power. A programmer can create an array with transient elements,
but currently there is no possibility to make objects (fields) other than array
elements transient. All local variables are transient.

The distinction between persistent and transient objects is very important
since these two types of objects are treated in a different way by JAVA CARD’s
transaction mechanism. The following are the JAVA CARD system calls for trans-
actions with their description:

JCSystem.beginTransaction() begins an atomic transaction. From this point
onwards, until the transaction finishes, all assignments to fields of objects
are executed conditionally, while assignments to transient variables or array
elements are executed unconditionally (immediately).

JCSystem.commitTransaction() commits the transaction. All conditional as-
signments are committed (in one atomic step).

JCSystem.abortTransaction() aborts the transaction. All the conditional as-
signments are rolled back to the state in which the transaction started. As-
signments to transient variables and array elements remain unchanged (as if
there were no transaction in progress).

A “throughout” property (formula) has to be checked after every single field
or variable assignment which, according to the JAVA CARD runtime environment
specification [31], is atomic. Such checks have to be suspended, however, when
a transaction is in progress, because the assignments inside a transaction are
not atomic, only the whole transaction is atomic. Moreover, as already said,
each transaction can either finish successfully, in which case it commits all the
conditional assignments, or it can fail and in that case the transaction is aborted
and all the conditional assignments have to be rolled back. The logic has to
account for the possibility of an abort and for the difference between persistent
and transient data.

Observe that the possibility of an aborted transaction affects even the se-
mantics of the standard modal operators 〈·〉 and [·], because an abort affects the
final state of the program. Details of how the extension of JAVA CARD DL that
deals with transactions is handled in the calculus can be found in [4]. We do
not repeat the technical solution in this paper, but we stress that the details are
rather involved and surprisingly complex. The KeY Prover implements the whole
extension of JAVA CARD DL with “throughout” and transaction mechanism. To
our knowledge the KeY Prover is the only prover for JAVA CARD programs that
fully handles JAVA CARD transactions.
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When a strong invariant has been specified for a JAVA CARD program, say,
for a class C, each of C’s methods can be a subject to verification with respect
to the strong invariant. A typical proof obligation for a method m() involving a
strong invariant looks as follows:

(Inv ∧ Pre ∧ StrongInv) → [[C :: m();]] StrongInv

Inv stands for a standard (weak) invariant of class C and Pre stands for the
method’s precondition. Apart from those two premises one also has to assume
that the strong invariant StrongInv holds before method m() is executed to
establish that StrongInv holds throughout the execution of m().

3 Case Study: JAVA CARD Electronic Purse

The case study presented here is based on the JAVA CARD electronic purse ap-
plication Demoney [23]. While Demoney has not all the features of a purse
application actually used in production, it is provided by Trusted Logic S.A. as
a realistic demonstration application that includes all major complexities of a
commercial program.

Our target program is a somewhat refactored fragment of Demoney and con-
centrates on the important aspects of the application to highlight our verification
results. The Demoney source code is at present not publicly available, and we
do not show it. The program we verified is, however, very close to Demoney
and follows the Demoney specification [23]. We deviate from Demoney mainly
in that our program is designed to make verification simpler. We discuss these
issues in detail in Section 4.2.

The safety properties that we discuss here were directly motivated by the
ones described in [24]. In fact the property we prove (that the current balance
of the purse is always in sync with the balance recorded in the most recent log
entry) for the processSale method presented in Section 3.4 is exactly the one
described in [24, Section 3.5]. The example mentioned there is also based on the
Demoney application.

3.1 The LogRecord Class

The UML class diagram of our program is shown in Figure 1. The basic class
is LogRecord which is used to store data about a single purse transaction. The
data consists of the new balance after the transaction (balance:short), trans-
action identifier (transactionId:int) and transaction date (date:SaleDate).
Additionally, the attribute empty states if a particular instance of LogRecord is
in use.

Such an attribute is characteristic for the JAVA CARD platform, which is a
memory constrained device and in general does not possess a garbage collector.
To avoid memory overflow during execution all objects are allocated during the
initialisation phase of JAVA CARD applets and the programmer keeps track of
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0..*

LogRecord

-balance:short=-1

-date:SaleDate=null

-transactionId:int=-1

-empty:boolean=true

+LogRecord()

+setRecord(balance:short,date:SaleDate,transId:int):void

LogFile

-logFileSize:int=20

-currentRecord:int

-log:LogRecord[]=new LogRecord[logFileSize]

+LogFile()

+addRecord(balance:short,date:SaleDate,transId:int):void

Purse

logFile:LogFile=new LogFile()

balance:short=1000

+Purse()

+processSale(amount:short,sellerId:int):void

Fig. 1. Purse application class diagram

which objects are already in use, for example by introducing attributes like
empty.3 The LogRecord class contains only one method, which is responsible for
assigning values to its attributes:

public void setRecord(short balance, SaleDate date, int transId) {

this.balance = balance;

this.date = date;

this.transactionId = transId;

this.empty = false;

}

3.2 Specification and Verification of setRecord

Regarding data consistency, the main property one needs to establish about the
class LogRecord is to assure that at any point all the instances of this class that
are in use are properly initialised. Expressed in (pseudo) OCL this property
reads:

context LogRecord throughout:
not self.empty implies
self.balance >= 0 and self.transactionId > 0 and self.date <> null

This states that all attributes of LogRecord objects that are in use have proper
values at any point in time. We want to prove that the method setRecord

3 Some design and implementation choices in our example may seem artificial (for
example, the value of empty never changes from false to true), but the point was
to illustrate certain critical issues.
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preserves this strong invariant. In order to do this, one needs a precondition
saying that the parameters that are passed to setRecord have proper values.
The resulting JAVA CARD DL proof obligation in the actual notation used by the
KeY Prover is:

!self = null

& balance >= 0 & !date = null & transId > 0

& (self.empty = FALSE ->

(self.balance >= 0 & !self.date = null & self.transactionId > 0))

-> [[{ self.setRecord(balance, date, transId); }]]

(self.empty = FALSE ->

(self.balance >= 0 & !self.date = null & self.transactionId > 0))

This is proved automatically with 230 rule applications in 2 seconds.4 If we
change the strong invariant into a weak invariant, that is, replace the throughout
modality in the formula above with a diamond modality, the resulting proof
obligation is (as expected) also provable (125 rules, less than 2 seconds).

Observe that the order of attribute assignments in setRecord’s body is cru-
cial for the strong invariant to hold. If we change setRecord’s implementation
to

public void setRecord(short balance, SaleDate date, int transId) {

this.empty = false;

this.balance = balance;

this.date = date;

this.transactionId = transId;

}

then it does not preserve the strong invariant anymore, while it still preserves
the weak invariant. When trying to prove the strong invariant for this imple-
mentation the prover stops after 248 rule applications with 6 open proof goals.
The proof for the weak invariant proceeds in the same fashion as for the previous
implementation.

3.3 The Purse Class

The Purse class is the top level class in our design. The Purse stores a cyclic
file of log records (each new entry allocates an unused entry object or overwrites
the oldest one), which is represented in a class LogFile. LogFile allocates an
array of LogRecord objects, keeps track of the most recent entry to the log and
provides a method to add new records—addRecord.

The Purse class provides only one method—processSale. It is responsible
for processing a single sale performed with the purse—debiting the purchase
amount from the balance of the purse and recording the sale in the log file.
To ensure consistency of all modified data, JAVA CARD transaction statements
4 All the benchmarks presented in this paper were run on a Pentium IV 2.6GHz

Linux system with 512MB of memory. The version of the KeY Prover used (0.1200)
is available on request. The prover was run with JAVA 1.4.2.
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are used in processSale’s body. Figure 2 shows the UML sequence diagram
of processSale. The total amount of code invoked by processSale amounts
to less than 30 lines, however, it consists of nested method calls to 5 different
classes.

3.4 Specification and Verification of processSale

As stipulated in [24], we need to ensure consistency of related data. In our case,
this means to express that the state of the log file is always consistent with the
current state of the purse. More precisely, we state that the current balance of
the purse is always equal to the balance stored in the most recent entry in the
log file. The corresponding strong invariant expressed in pseudo OCL is:

context Purse throughout:
self.logFile.log.get(self.logFile.currentRecord).balance = self.balance

Since processSale is the method that modifies both the log file and the state
of the purse, we have to show that it preserves this strong invariant. The most
important part of the resulting proof obligation expressed in JAVA CARD DL is
the following:

JCSystem.transactionDepth = 0

& !self = null

& !self.logFile = null

& !self.logFile.log = null

& self.logFile.currentRecord >= 0

& self.logFile.currentRecord < self.logFile.log.length

& self.logFile.log[self.logFile.currentRecord].balance = self.balance

-> [[{ self.processSale(amount, sellerId); }]]

self.logFile.log[self.logFile.currentRecord].balance = self.balance

This proof obligation is proved automatically by the KeY Prover modelling the
full JAVA CARD standard (see Section 3.6) in less than 2 minutes (7264 proof
steps).

3.5 Post Hoc Verification of Unaltered Code

We just reported on successful verification attempts of a refactored and par-
tial version of the Demoney purse application. When it comes to capabilities
and theoretical features of the KeY Prover there is nothing that prevents us in
principle from proving properties about the real Demoney application. There
are, however, some design features in Demoney that make the verification task
difficult. We discuss them in detail in Section 4.2.

We also proved total correctness proof obligations for two simple, but com-
pletely unaltered, methods of Demoney called keyNum2tag and keyNum2keySet.
This was possible, because the problems discussed in Section 4.2 below stayed
manageable in these relatively small examples. It was crucial that the KeY Prover



10 R. Hähnle and W. Mostowski

m
et

ho
dC

al
le

r

in
iti

al

P
ur

se

if(
ba

la
nc

e 
< 

0)

el
se

st
at

ic

JC
S

ys
te

m

if(
tr

an
sa

ct
io

nD
ep

th
 >

 (b
yt

e)
0)

if(
tr

an
sa

ct
io

nD
ep

th
 =

= 
(b

yt
e)

0)

if(
tr

an
sa

ct
io

nD
ep

th
 =

= 
(b

yt
e)

0)

st
at

ic

Tr
an

sa
ct

io
nE

xc
ep

tio
n

sy
st

em
In

st
an

ce

Tr
an

sa
ct

io
nE

xc
ep

tio
n

lo
gF

ile

Lo
gF

ile

if(
cu

rr
en

tR
ec

or
d 

==
 lo

gF
ile

Si
ze

)

if(
lo

g[
po

sT
oI

ns
er

t] 
==

 n
ul

l)

lo
gR

ec
or

d

Lo
gR

ec
or

d

if(
ba

la
nc

e 
< 

0)

el
se

if(
tr

an
sa

ct
io

nD
ep

th
 >

 (b
yt

e)
0)

if(
tr

an
sa

ct
io

nD
ep

th
 =

= 
(b

yt
e)

0)

if(
tr

an
sa

ct
io

nD
ep

th
 =

= 
(b

yt
e)

0)

if(
cu

rr
en

tR
ec

or
d 

==
 lo

gF
ile

Si
ze

)

if(
lo

g[
po

sT
oI

ns
er

t] 
==

 n
ul

l)

1.
3.

1.
3:

 s
et

R
ec

or
d(

ba
la

nc
e,

 d
at

e,
 tr

an
sa

ct
io

nI
d)

:v
oi

d

1.
1.

1.
1.

1:
 s

et
R

ea
so

n(
re

as
on

):v
oi

d

1.
3.

2.
2:

 jv
m

C
om

m
itT

ra
ns

ac
tio

n(
):v

oi
d

1.
3.

2.
1.

1:
 th

ro
w

It(
Tr

an
sa

ct
io

nE
xc

ep
tio

n.
N

O
T_

IN
_P

R
O

G
R

ES
S)

...

1.
2.

1.
2:

 jv
m

A
bo

rt
Tr

an
sa

ct
io

n(
):v

oi
d

1.
2.

1.
1.

1:
 th

ro
w

It(
Tr

an
sa

ct
io

nE
xc

ep
tio

n.
N

O
T_

IN
_P

R
O

G
R

ES
S)

...

1.
1.

2:
 jv

m
B

eg
in

Tr
an

sa
ct

io
n(

):v
oi

d

1.
1.

1.
1:

 th
ro

w
It(

Tr
an

sa
ct

io
nE

xc
ep

tio
n.

IN
_P

R
O

G
R

ES
S)

:v
oi

d

1.
3.

2:
 c

om
m

itT
ra

ns
ac

tio
n(

):v
oi

d

1.
3.

1:
 a

dd
R

ec
or

d(
ba

la
nc

e,
 c

ur
re

nt
D

at
e,

 s
el

le
rId

):v
oi

d

1.
2.

1:
 a

bo
rt

Tr
an

sa
ct

io
n(

):v
oi

d

1.
1:

 b
eg

in
Tr

an
sa

ct
io

n(
):v

oi
d

1:
 p

ro
ce

ss
S

al
e(

am
ou

nt
,s

el
le

rId
):v

oi
d

Fig. 2. Sequence diagram of the processSale method



Verification of Safety Properties in the Presence of Transactions 11

allows to prove properties of unaltered JAVA code. This implies that, in princi-
ple, JAVA code does not have to be prepared, translated, or simplified in any way
before it can be processed by the prover. Unaltered JAVA source programs are
first-class citizens in Dynamic Logic. JAVA CARD DL formulae simply contain
references to source code locations such as this:

fr.trustedlogic.demo.demoney.Demoney self;

byte keyNum;

byte result;

...

result = self.keyNum2tag(keyNum);

As the source code we proved properties about was given beforehand, what we
did can be called post hoc verification.

3.6 Performance

We emphasise that all mentioned proofs were achieved fully automatically. What
it means for the user is that there is no interaction required during the proof
and, as a consequence, the user does not have to understand the workings of the
JAVA CARD DL calculus.

Proof Obligation Time (sec.) Steps Branches

[[setRecord]] 2.0 230 20

〈setRecord〉 1.5 125 6

[[setRecord]]F 2.1 248 6 open

〈keyNum2tag〉D 3.3 392 18

〈keyNum2keySet〉D 5.5 640 33

[[processSale]]1 41.4 3453 79

[[processSale]]2 51.3 4763 248

[[processSale]]3 111.1 7264 338

F Failed proof attempt
D Methods from Demoney (full pre/post behavioural specification)
1 Ideal arithmetic, no null pointer checks
2 Ideal arithmetic, with null pointer checks
3 JAVA arithmetic, with null pointer checks

Table 1. Performance of KeY Prover for examples discussed in the text

Table 1 summarises proof statistics relating to the examples discussed pre-
viously. Some explanations about the three different versions of the proof for
processSale are due: the KeY Prover allows to use different settings for the
rules used during a proof. One of those settings concerns the kind of arithmetics
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(see Section 2.2). When ideal arithmetic is used, then all integer types are con-
sidered to be infinite and, therefore, without overflow. When JAVA arithmetic is
used, the peculiarities of integer types as implemented in JAVA are taken into
account: different range (byte, short, etc.), finiteness, and cyclic overflow.

Another prover setting is the null value check. When switched off, many
variables with object references are assumed to be non null without bothering
to prove this fact. When switched on, the prover establishes the proper value
of every object reference. Obviously, proofs involving null checks are more ex-
pensive. The checks for index out of bounds in arrays are always performed by
the prover. The benchmark for the third version of processSale represents the
prover’s behaviour with support for the full JAVA CARD standard.

Figure 3 shows a screenshot of the KeY Prover with a successful proof for
the third version of processSale.

Fig. 3. KeY Prover window with successful proof

4 Results

4.1 Verification Technology

Although we so far managed to verify only a small and partly refactored part of
Demoney , we are encouraged by what we could achieve. The verified programs
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contain many complex features: nearly every statement can throw an exception,
many JAVA arithmetic and array types occur, there are several nested method
calls and, above all, JAVA CARD transactions that may cause subtle errors.

The largest example involves about 30 lines of source code. This may not seem
much, but it clearly indicates that methods and classes of non-trivial size can be
handled. In addition, the next version of the KeY prover will support composition
of proofs including a treatment of representation exposure by computation of
modifier sets [7]. Consequently, we expect that formal verification of JAVA CARD

programs comparable to Demoney is achievable before long.
On the other hand, there are also serious limitations. To start with, we ob-

served that verification of the more complex methods of the unaltered Demoney
program results in specifications and proof obligations that simply become too
long and complex. In our opinion, this problem must be attacked by moving
from post hoc verification to design for verification, see the following section.

It would be desirable to have a more formal statement here relating types of
programs and proof complexity. The problem is that even loop-free JAVA CARD

programs contain control structures like exceptions and transactions that have a
global effect on control flow. Taking away all critical features yields an uninter-
esting programming language, while leaving them in renders general statements
on proof complexity (at least the ones we could think of) simply untrue.

A principal obstacle against automating program verification is the necessity
to perform induction in order to handle loops (and recursion). In most cases,
the induction hypothesis needs to be generalised, which requires considerable
user skill. There is extensive work on automating induction proofs, however,
mostly for simple functional programming languages as the target. Only recently,
preliminary work for imperative target languages [29, 16] appeared. If, however,
Demoney is a typical JAVA CARD application, then loops might be much less of a
problem than thought: of 10 loops in Demoney (9 for, 1 while) most are used to
initialise or traverse arrays of known bounds. Such loops do not require induction
at all. The next version of the KeY Prover contains a special automated rule for
handling them. Our analysis showed that at most one loop in Demoney perhaps
needs induction. There is no recursion.

Speed and automated theorem proving support, for example, for arithmetic
properties, need to be improved in order to achieve an interactive working mode
with the prover, which is not possible with proofs that in some cases take min-
utes. There is no principal obstacle here; for example, the speed increased by an
order of magnitude since we began the case study.

An important question is whether we are able to express all relevant require-
ments. There is no agreement on standard requirements for JAVA CARD, but the
report [24] can serve as a guideline. Many of the security properties related there
can be expressed in JAVA CARD DL including strong invariants. In the present
paper we concentrated on data consistency in connection with atomic transac-
tions. The examples included also overflow control. In [14] it was shown that
also information flow properties are expressible. We have strong evidence that
also memory allocation control, error control and even the well-formedness of
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transactions can be formulated. For example, the following two properties, taken
from [24] can be formulated in JAVA CARD DL: (i) no TransactionException
related to well-formedness is thrown, (ii) only ISOExceptions are thrown at the
top level of an applet.

The main limitation of the currently used version of JAVA CARD DL is the
impossibility to express complex temporal relationships between the execution
of different code fragments to establish advanced control flow properties such as
a certain temporal order on method calls. This requires more complex temporal
operators than “throughout” or some kind of event mechanism, and is a topic
for future research. On the specification side, some work was done in [32], while
[8] looked at abstracted byte code in a model checking framework.

4.2 Design for Specification and Verification

The way Demoney is designed and coded causes certain technical complications
both when specifying and proving safety properties of programs with transac-
tions. We demonstrate two issues and discuss their impact on the process of
specification and verification of JAVA CARD programs. Thereby, we give guide-
lines for the design of JAVA CARD applications to avoid such problems.

Byte Arrays. Following the specification in [23, p. 17] Demoney implements a
cyclic log file in a very similar fashion to our Purse class. Demoney stores more
information than our program in a single log record, but that’s not an issue
when it comes to formal verification. The major difference is that each single log
record is implemented as a byte array instead of an object (of class LogRecord
in our case). We suspect that the main reason for implementing a log record
as a byte array is to ease the transportation of log data to the card terminal.
Another reason, explicitly mentioned in the specification, is to follow the schema
of recording data in the form of TLVs (Tag-Length-Value). Finally, because of
memory costs in smart cards, byte arrays are still much used to save some small
memory overhead one has to pay for object instances and booleans.5

The use of a byte array instead of an object type has consequences for
the verification process. To start with, JAVA CARD allows only one dimensional
arrays, which means that one cannot explicitly declare in a JAVA CARD program
that a log file is a two-dimensional array. So instead of saying

byte[][] logFile;

one has to say

Object[] logFile;

and then allocate this data structure by saying:

5 The last point was confirmed by Renaud Marlet, Trusted Logic S.A., in personal
communication.
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logFile = new Object[logFileSize];

for(short i=0; i<logFile.length; i++)

logFile[i] = new byte[LOG_RECORD_SIZE];

Since this is a dynamic allocation, there is no static information on the type of
elements in the logFile array. Statically, one can only deduce that those ele-
ments are of type Object. In the verification process however, such information
has to be made more precise. Since it cannot be deduced statically, it has to be
included in the assumptions (that is, preconditions) of a proof obligation explic-
itly. In JAVA CARD DL this requires use of existential quantifiers and lengthy
Dynamic Logic expressions. In many cases, existential quantification makes it
harder to find a proof automatically. If, instead, one declares a logFile as

LogRecord[] logFile;

the situation is much clearer from the prover’s point of view. The only assump-
tion needed in this case is that the elements of the logFile array are not null.
In general it would also require a quantifier (universal), but in the special case
of our program we are only interested in two elements of this array, so that the
following assumption is sufficient:

!logFile[currentRecord] = null &

!logFile[(currentRecord + 1) % logFileSize] = null

This, together with the declaration of logFile, is enough for the prover to
establish type information about all relevant elements of logFile. Moreover, if
the logFile is statically allocated right after it is declared,

LogRecord[] logFile = new LogRecord[20];

then no assumptions about the elements of logFile are necessary at all. The
logFile example is not an isolated case, as one can find several occurrences of
declarations of Object arrays in Demoney .

The second issue with the use of byte arrays for storing log records is related
to arithmetics. The strong invariant for our Purse class states:

self.logFile.log[self.logFile.currentRecord].balance = self.balance

The type of attribute balance both in LogRecord and in Purse is short. When
the byte array is used for storing log record data, then the value of balance is
stored in two byte elements of this array. Comparing such a two byte value
stored in an array to a short value becomes a bit complicated:

self.logFile.log[self.logFile.currentRecord][OFF_BALANCE] =

castToByte((self.balance - castToByte(self.balance % 256)) / 256) &

self.logFile.log[self.logFile.currentRecord][OFF_BALANCE + 1] =

castToByte(self.balance % 256)

This specification expression is based on an educated guess of how the JAVA

CARD API method Util.setShort [31] is implemented (setShort is a native
method and its implementation is not disclosed). Expanding the Dynamic Logic
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function symbol castToByte results in another modulo operation. Also note that
all arithmetic function symbols have JAVA types and must be checked against
overflow. Proving with expressions such as the one shown above is difficult, if
not practically unfeasible.

We sum up the problems associated to byte arrays: (1) typing information is
difficult to establish, causing very complicated preconditions, and (2) comparison
of short values unwrapped into two byte values requires the use of complex
expressions involving modulo arithmetics. Both problems have serious impact
on the size of proofs and automation.

The use of byte arrays is partially steered by the TLV standard. We do not
argue with the purpose or usability of this standard in smart card technology,
and we accept its motivations, such as the performance and space optimisation
of JAVA CARD applets. It seems obvious, however, that some things have to be
traded off to ease formal specification and verification of JAVA CARD programs.

One general guideline would be to use object types to store any kind of non-
primitive data, at least if they are persistent (for transient data there is no choice
but an array in JAVA CARD). Furthermore, serialise objects only if necessary
(in case of JAVA CARD for communication). As part of a bigger picture one
should consider to decouple application functionality from the communication
model. Such a decoupled design is likely to allow decomposable, and thus easier,
verification. It is more robust, too. We point to the fact that the examples
presented in [24] follow for the most part the guideline of using object types
instead of byte arrays for storing data.

Cyclic Indexing of Arrays. Another problematic issue for specification and ver-
ification is the way information on the most recent record in the log file is kept
and updated in Demoney . This is rather a problem of coding conventions and
not a design issue. Demoney ’s cyclic file class has an attribute that stores the
index of the next record to be used—nextRecordIndex. In order to access the
most recent entry in the log, one writes an expression like:

logFile[(nextRecordIndex - 1) % logFileSize] ...

Modulo arithmetics is used to calculate the actual index. If we add the way the
nextRecordIndex is updated, that is

nextRecordIndex = (nextRecordIndex + 1) % logFileSize;

then the prover has to establish the validity of equations such as:

index = (((index - 1) % logFileSize) + 1) % logFileSize

where all arithmetic function symbols have JAVA types and must be checked
against overflow. This is certainly not impossible, but it adds substantially to the
complexity of the resulting first-order proof obligations and, in connection with
other phenomena, can make the problems too difficult to prove automatically.
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To avoid these complications, we suggest two simple guidelines. The first is to
keep track of those indices that are relevant for specification and verification, in-
stead of those for implementation (or simply keep both kinds of indices). The sec-
ond is to avoid modulo operations, if possible. The update of nextRecordIndex
can be easily rewritten as:

nextRecordIndex++;

if (nextRecordIndex == logFileSize)

nextRecordIndex = 0;

This program fragment might not be as simple and fast as the one before, but
it considerably eases verification.

We believe that if the problems mentioned in this section were not present
we would be able to verify automatically that Demoney ’s performTransaction
method preserves the kind of strong invariant that we had in our Purse class.

Discussion. Asking a programmer to rewrite the code to ease verification may
seem unrealistic. It may look as if we put the burden of making verification
feasible on the programmer instead of enabling the prover handle arbitrarily
complex programs. This is not the case. Our aim is to make the KeY prover
powerful enough to deal with complex JAVA CARD code, however, one cannot
expect a prover to deal with baroque programs optimised for performance. A
trade-off has to be found. The guidelines we proposed are simple to follow and,
in addition, make sense from a software engineering point of view. In particular,
we do not assume that the programmer has any knowledge of the theorem prover.

Another counter argument against rewriting the code is that abstraction and
interface specification should be used to simplify the verification process and get
around some of the problems we described above. We fully agree with this, where
this possibility is applicable, but in the context of JAVA CARD applet verification
it is not so. For example, when one proves a rip-out related property, one cannot
abstract away from the implementation of the API methods, because the actual
implementation of an API method affects the intermediate states of the program
being verified.

5 Related Work

A version of Dynamic Logic that extends pure Dynamic Logic with trace modal-
ities “throughout” and “at least once” was first presented in [5]. The axiomati-
sation of transactions was provided in [4]. Paper [18] proposes another approach
to reasoning about rip-out properties (called card tears there). It presents a
theoretical framework for dealing with card tears and transactions based on
global program (method) transformation (as opposed to the KeY approach of
local transformations). This paper does not report on any practical verifica-
tion attempts. In [32] temporal constructs are introduced to the JAVA Modelling
Language (JML), but they refer to sequences of method invocations and not to
sequences of intermediate program states.
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Paper [19] is closely related to our work in the sense that it reports on
successful verification attempts of a commercial JAVA CARD applet with different
verification tools (ESC/JAVA2, Jive, Krakatoa, LOOP). The security property
under consideration, also mentioned in Section 4.1, is that only ISOExceptions
are thrown at the top level. Transaction related properties are not investigated.
Like in the present study, it is stressed that two-dimensional byte arrays and
the use of byte arrays in general are problematic in JAVA CARD verification,
and have serious impact on the size and complexity of proofs. One of the main
results is that subtle bugs were found in the applet.

GemPlus provides a JAVA CARD case study similar to Demoney [10], also
a purse application and publicly available.6 We do not use it at the moment,
because it contains a large number of features that detract from the basic issues
and make it less suitable as a starting point for JAVA CARD verification. In
addition, it was not developed further in the last three years.

Related work in JAVA CARD verification can be classified according to several
criteria. Working on byte code avoids the problems of source code availability
and compiler trustworthiness, but makes full verification more difficult due to
information loss during compilation. An overview of work done on the byte code
level is provided in [9]—we concentrate on efforts targeted at source code: here,
one can distinguish between methods that attempt complete modelling of the
JAVA CARD semantics and those that do not. The latter include model checking
and extended static checking.

Model checking is based on a suitable abstraction of the execution model,
which in the Bandera project [13] is JAVA, and of the requirements. The ad-
vantages are full automation of the model checking phase, trace generation for
counter models, and treatment of concurrent JAVA programs. The drawback is
the need for abstraction which poses difficulties for programs containing JAVA

arithmetic and other inductive data structures. Bandera handles JAVA, not JAVA

CARD, and hence no transactions. In design-by-contract [25] and extended static
checking (ESC) [15] JAVA source code is decorated with annotations from a
restricted language. Annotated programs (via an intermediate representation)
undergo a dynamic analysis that produces first-order verification conditions for
a theorem prover. The analysis does not attempt to be complete, but it is fully
automatic and produces warnings, when annotations are potentially violated.
ESC is related to our strong invariants, because arbitrary code locations can
be annotated with object invariants [21]. An approximation of strong invariants
within ESC can be obtained by annotating every program point with the desired
invariant.7 Again, atomic transactions are not supported, as the target language
is JAVA.

Closest to our approach are source code verifiers for JAVA based on various
program calculi. The LOOP tool [20] translates JAVA source code with JML
specifications into theories for the PVS theorem prover. JAVA semantics is de-
scribed with co-algebras and uses higher-order logic as an internal representation.

6 http://www.gemplus.com/smart/enews/st1/pacap.html
7 We thank Rustan Leino for pointing this out.
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Higher-order logic is also used to formalise syntax and semantics of a JAVA frag-
ment in Isabelle [33] and in the Krakatoa tool [22]. In the latter JAVA programs
and their JML specifications are translated into an intermediate, mostly func-
tional, language, then proof obligations are generated, which in turn are proved
with the Coq proof assistant. The Jive system [26] is based on an extended
Hoare style calculus, Jack [11] on weakest precondition calculus, and KIV [30]
on Dynamic Logic. The last three systems are closely related to the KeY Prover
in that they all axiomatise JAVA with logical rules that can be seen as a small
step operational semantics and proofs can be interpreted as symbolic execution
with induction. The differences lie in the details and scope of the axiomatisation
as well as support for automation. As far as we know, KeY is the only system
that supports strong (object) invariants and, in particular, the semantics of JAVA

CARD transactions.

6 Conclusions

In this paper, we presented and analysed a case study concerned with formal
specification and verification of JAVA CARD programs. Our results show that
largely automated formal verification of realistic JAVA CARD applications without
abstraction is possible in the near future. It is possible already now provided that
applications are designed with verification in mind from the start. We gave a
number of simple design guidelines that drastically simplify proofs while creating
only a moderate performance overhead. We believe this to be acceptable, because
even in the smart card world, performance restrictions become less of an issue.
Besides, a small memory overhead seems an acceptable price for provably correct
programs.

We concentrated in this case study on safety (data consistency) properties in
the presence of transactions and possible arithmetic overflow. Information flow,
memory allocation, well-formedness of transactions, and error analysis would
be possible to formulate, but we cannot say anything about feasibility at this
time. Temporal relationships between the execution of different code fragments
as needed to enforce an order on method calls are a topic for future research.
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W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software
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16. R. Hähnle and A. Wallenburg. Using a software testing technique to improve
theorem proving. In A. Petrenko and A. Ulrich, editors, Post Conference Proceed-
ings, 3rd International Workshop on Formal Approaches to Testing of Software



Verification of Safety Properties in the Presence of Transactions 21
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22. C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certi-

fication of JAVA/JAVA CARD programs annotated in JML. Journal of Logic and
Algebraic Programming, 58(1–2):89–106, 2004. http://krakatoa.lri.fr.

23. R. Marlet and C. Mesnil. Demoney: A demonstrative electronic purse – Card
specification. Technical Report SECSAFE-TL-007, Trusted Logic S.A., November
2002.

24. R. Marlet and D. L. Métayer. Security properties and JAVA CARD specificities to
be studied in the SecSafe project. Technical Report SECSAFE-TL-006, Trusted
Logic S.A., August 2001.

25. B. Meyer. Applying “Design by Contract”. IEEE Computer, 25(10):40–51, October
1992.

26. J. Meyer, P. Müller, and A. Poetzsch-Heffter. The Jive system—implementation
description. Available from http://softech.informatik.uni-kl.de/old/en/

publications/jive.html, 2000.
27. W. Mostowski. Rigorous development of JAVA CARD applications. In T. Clarke,

A. Evans, and K. Lano, editors, Proc. Fourth Workshop on Rigorous Object-
Oriented Methods, London, 2002. Available from http://www.cs.chalmers.se/

~woj/papers/room2002.ps.gz.
28. V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proceedings, 18th

Annual IEEE Symposium on Foundation of Computer Science, 1977.
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