
JAVA CARD Tools for Together Control Center

Wojciech Mostowski
Chalmers University of Technology, Göteborg, Sweden

Computing Science Department
e-mail: woj@cs.chalmers.se

Abstract

This is a description of the JAVA CARD Tools package for Together
Control Center. The package supports the development of JAVA CARD

applets (writing, compiling, installing, testing, etc.) inside the Together
Control Center CASE tool.

1 Introduction

JAVA CARD technology [2] provides means to program Smart Cards using a sub-
set of the JAVA language. Nowadays there is a great variety of different JAVA

CARD devices/platforms available on the market. Although they all have to
conform to the JAVA CARD specification, they usually differ slightly from each
other. It’s very common that each JAVA CARD device producer provides its own
JAVA CARD development environment (it can be a complete Integrated Devel-
opment Environment or just a set of tools/scripts/compilers). None of those
tools provide a uniform, high level, UML supported environment for creating
JAVA CARD applications. Some of those tools are not very user friendly either.
The JAVA CARD Tools package tries to solve those inconveniences. It is an ex-
tension of a commercial CASE tool to provide support for different JAVA CARD

devices/platforms. The main goal is to provide a push-button technology inside
the CASE tool that makes JAVA CARD development easy and uniform for dif-
ferent kinds of JAVA CARD devices and overcome vendor specific Graphical User
Interfaces at the same time. The CASE tool in question is Together Control
Center (later referred to as TogetherCC) from TogetherSoft [8]. There are two
reasons for this choice. First of all TogetherCC is a state-of-the-art CASE tool
with excellent UML support and open architecture, which makes writing exten-
sions (in JAVA) an easy task. Second TogetherCC is the CASE tool used (as
a base) in the KeY system. The KeY project [1, 5] aims at integrating object-
oriented design with formal methods. The target language for the KeY project
is JAVA CARD due to its relative simplicity. So JAVA CARD Tools can be seen as
an extra support for the KeY system.

In Section 2 we describe the two JAVA CARD platforms that are currently
supported by JAVA CARD Tools in detail. Section 3 presents the capabilities of
JAVA CARD Tools and describes an example usage. Section 4 gives some of the
implementation details, Section 5 gives some directions for future extensions and
finally Section 6 gives some pointers to the JAVA CARD Tools documentation and
download web site.

1

2 JAVA CARD Platforms Supported

Currently there are two JAVA CARD platforms/kits supported by JAVA CARD

Tools, however, extending it to support other platforms is possible and the
JAVA CARD Tools architecture makes writing extensions a relatively easy task.
In the following subsections we describe the supported platforms in more detail.

2.1 Sun JAVA CARD Development Kit

Sun JAVA CARD Development Kit (jcdk in short) is a reference implementation
of the JAVA CARD development kit and tools. On its own the kit does not operate
on any real JAVA CARD devices, but such a device can be simulated or emulated
by the kit tools. The package includes:

• Class file verifier and converter (converter tool), which makes sure that a
given JAVA CARD applet complies to JAVA CARD language restrictions and
creates a .cap file suitable for downloading to a JAVA CARD device.

• jcwde tool (JAVA CARD Workstation Development Environment), which is
a simple JAVA CARD simulator (e.g. it does not allow saving the state of a
smart card between subsequent runs).

• cref tool (C reference implementation of a JAVA CARD environment). This
tool serves as a fully operational JAVA CARD emulator. It operates on JAVA

CARD EEPROM images and allows saving a smart card’s state after each
session in form of such an EEPROM image.

• apdutool, which is used to send Application Protocol Data Units to a
simulated/emulated JAVA CARD. APDUs are the only means of communi-
cation between a smart card and the host application/system.

2.2 Dallas Semiconductor JAVA Powered iButtons

Dallas Semiconductor JAVA Powered iButton [4] is a JAVA CARD device embed-
ded in a small button (buttons are more durable than normal smart cards).
iButtons implement JAVA CARD API version 2.0. A development environment
for iButtons (iB-IDE) is provided free of charge and can be downloaded from
the web [3]. iB-IDE provides the following tools and functionality:

• an integrated development environment for creating both JAVA CARD ap-
plets and host applications. Skeleton code can be generated for both with
the help of a project wizard.

• an APDU sender, which provides low level access to iButtons: download-
ing and removing applets from iButtons, changing iButton settings (e.g.
iButton password), sending arbitrary APDU packets to iButton, etc.

• iButton emulator, which can be used for testing applets before they are
downloaded to the real iButton.

iB-IDE is built on top of low level libraries with well documented API, which
makes it possible and relatively easy to reuse the libraries and build a new set
of tools to operate on iButtons.

2

Figure 1: JAVA CARD Applet pattern

3 Support for JAVA CARD Development

JAVA CARD Tools is a uniform front-end to the tools and libraries described
above. Since the tool set is embedded in TogetherCC it is possible to use the full
support of the CASE tool and operate with JAVA CARD devices and emulators
at the same time.

The support for JAVA CARD can be divided into two main parts:

• JAVA CARD patterns (code skeletons),

• user friendly, easily accessible commands and tools to test applets by
means of an APDU sender, which is used to “talk to” JAVA CARD de-
vices (either emulated/simulated or real). Those commands also include
helper commands to prepare and download applets to JAVA CARD devices.

3.1 JAVA CARD Patterns

There are two patterns available at the moment, namely JAVA CARD Applet and
JAVA CARD Shareable Interface. The latter is only available when JAVA CARD

API version 2.1 or higher is used (i.e. it’s not applicable when iButtons are
used).

As an example, Figure 1 shows the dialog of the JAVA CARD Applet pattern.
After applying this pattern to the project the skeleton code for a JAVA CARD

applet is created as well as some files necessary for the development kit used (in
this case Sun jcdk). The skeleton applet code generated by the pattern looks as
follows:

/* Generated by Together */

3

package testapplet;

import javacard.framework.*;

public class JCApplet1 extends Applet {

protected JCApplet1(){

// Write init code here

register();

}

/**

* @param bArray array with initialisation data

* @param bOffset offset into this array

* @param bLength length of the data

*/

public static void install(byte[] bArray,

short bOffset, byte bLength){

new JCApplet1();

}

/**

* @param apdu the incoming apdu packet to process

*/

public void process(APDU apdu){

byte buffer[] = apdu.getBuffer();

if ((buffer[ISO7816.OFFSET_CLA] == ISO7816.CLA_ISO7816) &&

(buffer[ISO7816.OFFSET_INS] == ISO7816.INS_SELECT)) {

// that was the SELECT APDU

}

}

}

The JAVA CARD Shareable Interface pattern simply creates an empty JAVA CARD

shareable interface like the following:

/* Generated by Together */

package testapplet;

import javacard.framework.*;

public interface MyInterface extends Shareable {

}

3.2 Installing and Testing Applets

The remaining JAVA CARD Tools functionality is accessed through TogetherCC’s
class diagram context (pop-up) menu (JAVA CARD tools. . . menu group). Fig-
ure 2 shows the full structure of this menu for both Sun JAVA CARD Develop-
ment Kit and Dallas Semiconductor iButtons. Two menu commands are al-
ways present regardless of the JAVA CARD kit used, namely Display JAVA CARD

environment info and Rediscover JAVA CARD environment info. The first one
displays all the necessary information about the JAVA CARD kit that is currently
used and the second one reconstructs this information in case the user changed
the kit. In the following we demonstrate how some of the other commands listed
in Figure 2 are used for JAVA CARD applet installation, testing and management.

4

Sun JAVA CARD Development Kit:

Display JAVA CARD environment info
Rediscover JAVA CARD environment info
Converter tools. . .

Create/update .opt file for this
package/applet

Run converter for this package/applet
Jcwde tools. . .

Create/update jcwde.app file
Start APDU sender

Cref tools. . .
Create virtual card EEPROM image
Start APDU sender

Dallas Semiconductor iButtons:

Display JAVA CARD environment info
Rediscover JAVA CARD environment info
JiBlet. . .

Build JiBlet for this applet
Applet administration. . .

Get iButton information
Load this applet to iButton
List applets installed on iButton
Remove this applet from iButton
Remove applet from iButton by name
Master erase iButton
Set new password for iButton

APDU sender. . .
Start APDU sender for this applet
Start APDU sender by name

Figure 2: JAVA CARD Tools pop-up menu structure

3.2.1 Preparing the Applet

Suppose a JAVA CARD applet is ready for testing at some point. The first thing
that has to be done is applet compilation. The standard TogetherCC tools are
used for that. After that, the compiled .class file(s) need to be converted to
a proper format. In case of Sun’s jcdk that is a .cap file. To create a .cap
file one needs to invoke Run converter for this applet command from the JAVA

CARD Tools pop-up menu. The messages from the converter are displayed in
TogetherCC’s message windows with ‘jump to error location’ feature. In the
example shown in Figure 3 a JAVA CARD applet uses a forbidden class String.
By clicking on a message the source of the error is displayed in the editor window.

When JAVA Powered iButton is used then the JiBlet file (.jib) needs to be
built by invoking Build JiBlet for this applet command from JAVA CARD Tools
menu. It works almost in the same way as the converter tool.

Figure 3: The converter tool

5

3.2.2 Testing Applets with Sun Jcdk Tools

After a .cap file for an applet is created, we can create a card’s EEPROM im-
age with that applet and run JAVA CARD emulator on the EEPROM image. To
create an EEPROM image the Create virtual card EEPROM image command
has to be invoked from the Cref tools submenu. If the applet uses some ad-
ditional libraries, which are not part of the current package the user is asked
whether those libraries should be included in the card’s EEPROM image (that’s
usually the case), see Figure 4. Then an appropriate script is invoked and the
EEPROM image is created with all the necessary messages displayed in Togeth-
erCC’s message window.

Figure 4: Creating a card EEPROM image

After the EEPROM image is created we can start an APDU sender for
an emulated card. This is done by invoking Cref tools/Start APDU sender
command. A window like the one in Figure 5 is displayed.

By pressing the ‘Power up’ button the cref emulator is started up. Then an
applet can be selected on a virtual card by pressing the ‘Select applet’ button.
Then any APDU packet can be constructed and sent to the emulator. The
results will be displayed in the response panel. After pressing ‘Power down’ the
current EEPROM image of the emulated card is saved, so that it can be used
again for further testing. Pressing ‘Exit’ closes the APDU sender window (and
also makes sure that the EEPROM image is saved).

Another option is to test the applet using the jcwde card simulator. It
works in a similar way to cref except that the EEPROM image is not used and
therefore does not have to be created.

3.2.3 Testing Applets on iButtons

Once a JiBlet file is created for an applet, it can be downloaded to the iButton.
This is done by invoking Load this applet to iButton command from the Applet
administration submenu. If there is more than one iButton attached to the
computer the user will be asked to choose one for downloading the applet. After
successful download an APDU sender can be started to communicate with the
iButton. This is done by invoking Start APDU sender for this applet command.
Exactly the same window as described earlier pops up (see Figure 6). Again
‘Power up’ button should be pressed to initialise the iButton, then the given
applet can be selected by pressing ‘Select applet’ and then the user can start
sending arbitrary APDUs to the applet and watch the responses.

6

Figure 5: APDU sender window running cref emulator

Figure 6: APDU sender window for an iButton

7

In the current version of JAVA CARD Tools there is no possibility to operate
on an emulated iButton, only real iButtons. This is due to the lack of API
documentation for the iButton emulator library.

Other iButton commands. There are a number of other, very useful com-
mands in the Applet administration submenu for iButtons. They allow the
following things:

• listing all the applets installed on an iButton,

• removing applets from iButtons,

• getting full iButton device information (ID string, firmware version, free
memory, etc.),

• master erasing an iButton,

• changing the access password for an iButton.

4 A Few Words About The Implementation

As already mentioned JAVA CARD Tools is just a front-end to a set of tools and
libraries. As TogetherCC provides an open JAVA API, writing plug-ins and ex-
tensions is a relatively simple task—most of the internals of TogetherCC are
available to the programmer. JAVA CARD Tools provides their support by ex-
tending TogetherCC’s class diagram pop-up menu and adding new patterns to
the TogetherCC pattern collection. To interface the tool set with Sun JAVA

CARD Development Kit, processes running required tools (apdutool, cref, . . .)
are started inside TogetherCC and the messages are passed to and from ap-
propriate windows (TogetherCC message window, APDU sender window, etc.).
The iButton support and communication is provided by the JiBlet JAVA library
(JiB.jar) and iButton 1-Wire JAVA library (OneWireAPI.jar). Operating and
communicating with iButtons is implemented by a few simple calls to those
libraries. Both of those libraries are provided with iButton Integrated Develop-
ment Environment free of charge.

JAVA CARD Tools package relies on TogetherCC’s API, however there are no
obstacles to make the package work with another CASE tool as long as the tool
provides the necessary functionality and API for JAVA CARD Tools to function
properly (e.g. access to a project’s class path, access to the tool’s editor, etc.).
Also, as mentioned earlier, the JAVA CARD Tools package is easily extensible
to support other JAVA CARD development kits and devices. For example, since
most of the APDU sender functionality is independent of the device used, to
enable sending APDUs to a JAVA CARD device with APDU sender it is basically
enough to write a JAVA class that will communicate with the device and then
just plug it in to the APDU sender class through a very simple interface.

5 Possible Extensions

One of the things that should be considered as a future extension is a generic
support for any JAVA CARD platform that implements Open Card API [7]. The

8

menu structure could be improved by abstracting the common commands for
different development kits (e.g. Prepare the applet for download). Such menu
abstraction would make the menus more uniform, independent of the actual
JAVA CARD platform and easier to use for unexperienced users. On the other
hand, however, experienced users familiar with a given development kit may
actually prefer the concrete version of the menu to have more control over the
actual tools they invoke with menu commands.

Furthermore some small extensions are possible, like having a set of an ap-
propriately formed APDUs for all commands predefined in an applet to choose
from in APDU sender window, etc. Also some more useful JAVA CARD patterns
and code skeletons can be added to the pattern collection.

6 Further Information

A detailed User Guide and Installation Guide in HTML format can be found in
JAVA CARD Tools package as well as on the package web site [6]. The package
itself (currently version 2.0—jctools-2.0.zip) can be downloaded from this
page too.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Reiner Hähnle,
Wolfram Menzel, Wojciech Mostowski, and Peter H. Schmitt. The KeY system: In-
tegrating object-oriented design and formal methods. In Ralf-Detlef Kutsche and
Herbert Weber, editors, Fundamental Approaches to Software Engineering. 5th
International Conference, FASE 2002 Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2002 Grenoble, France, April
2002, Proceedings, volume 2306 of LNCS, pages 327–330. Springer, 2002.

[2] Zhiqun Chen. JAVA CARD Technology for Smart Cards. Addison Wesley, 2000.

[3] iB-IDE homepage. http://www.ibutton.com/iB-IDE/.

[4] iButton homepage. http://www.ibutton.com/.

[5] KeY project homepage. http://i12www.ira.uka.de/~projekt/.

[6] Wojciech Mostowski. JAVA CARD Tools for Together Control Center webpage.
http://www.cs.chalmers.se/~woj/javacard/.

[7] Open Card homepage. http://www.opencard.org/.

[8] TogetherSoft homepage. http://www.togethersoft.com/.

9

http://www.cs.chalmers.se/~woj/javacard/jctools-2.0.zip
http://www.ibutton.com/iB-IDE/
http://www.ibutton.com/
http://i12www.ira.uka.de/~projekt/
http://www.cs.chalmers.se/~woj/javacard/
http://www.opencard.org/
http://www.togethersoft.com/

	Introduction
	Java Card Platforms Supported
	Sun Java Card Development Kit
	Dallas Semiconductor Java Powered iButtons

	Support for Java Card Development
	Java Card Patterns
	Installing and Testing Applets
	Preparing the Applet
	Testing Applets with Sun Jcdk Tools
	Testing Applets on iButtons

	A Few Words About The Implementation
	Possible Extensions
	Further Information

