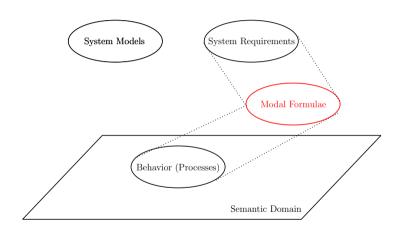
System Validation: Extensions of Hennessy-Milner Logic

Mohammad Mousavi and Jeroen Keiren

Open Universiteit

General Overview



Limitations of Hennessy-Milner Logic

- ► Properties like "the system is deadlocked" require reasoning about all actions
- ► Properties of infinite depth cannot be expressed, for example:

Limitations of Hennessy-Milner Logic

- Properties like "the system is deadlocked" require reasoning about all actions
- ► Properties of infinite depth cannot be expressed, for example:
 - lacktriangle all reachable states satisfy φ

$$Inv(\varphi) = \varphi \wedge [true]\varphi \wedge [true][true]\varphi \wedge \cdots$$

Limitations of Hennessy-Milner Logic

- Properties like "the system is deadlocked" require reasoning about all actions
- Properties of infinite depth cannot be expressed, for example:
 - ightharpoonup all reachable states satisfy φ

$$Inv(\varphi) = \varphi \wedge [true]\varphi \wedge [true][true]\varphi \wedge \cdots$$

lacktriangle there is a reachable state which satisfies arphi

$$Pos(\varphi) = \varphi \lor \langle true \rangle \varphi \lor \langle true \rangle \langle true \rangle \varphi \lor \cdots$$

Extending HML to Sets of Actions

For
$$A = \{a_1, \dots, a_n\} \subseteq Act$$
 with $n \ge 1$

• $\langle A \rangle \varphi$ denotes $\langle a_1 \rangle \varphi \vee \cdots \vee \langle a_n \rangle \varphi$ and $\langle \emptyset \rangle \varphi = false$

Extending HML to Sets of Actions

For $A = \{a_1, \dots, a_n\} \subseteq Act$ with $n \ge 1$

- $lack \langle A \rangle \varphi$ denotes $\langle a_1 \rangle \varphi \vee \cdots \vee \langle a_n \rangle \varphi$ and $\langle \emptyset \rangle \varphi = \mathit{false}$
- ▶ $[A]\varphi$ denotes $[a_1]\varphi \wedge \cdots \wedge [a_n]\varphi$ and $[\emptyset]\varphi = true$

Action formula

A described using the following syntax $(a \in Act)$:

$$A, B ::= false \mid true \mid a \mid \overline{A} \mid A \cup B \mid A \cap B$$

where $\overline{A} = Act \setminus A$, true matches all actions, false matches no action.

▶ the process is deadlocked

▶ the process is deadlocked

[true]false

▶ the process is deadlocked

[true]false

▶ the process can execute some action

▶ the process is deadlocked

[true]false

▶ the process can execute some action

 $\langle true \rangle true$

▶ the process is deadlocked

[true]false

▶ the process can execute some action

 $\langle true \rangle true$

► a must happen next

▶ the process is deadlocked

[true]false

▶ the process can execute some action

 $\langle true \rangle true$

► a must happen next

 $\langle a \rangle$ true $\wedge [\overline{a}]$ false

▶ the process is deadlocked

[true]false

▶ the process can execute some action

 $\langle true \rangle true$

► a must happen next

$$\langle a \rangle$$
 true $\wedge [\overline{a}]$ false

 $ightharpoonup \varphi$ holds after every step

▶ the process is deadlocked

[true]false

▶ the process can execute some action

 $\langle true \rangle true$

► a must happen next

$$\langle a \rangle$$
 true $\wedge [\overline{a}]$ false

 $ightharpoonup \varphi$ holds after every step

 $[true]\varphi \wedge \langle true \rangle true$

- $[\beta_1 \cdot \beta_2] \varphi = [\beta_1] [\beta_2] \varphi$
- $[\beta_1 + \beta_2]\varphi = [\beta_1]\varphi \wedge [\beta_2]\varphi$

- $[\beta_1 + \beta_2]\varphi = [\beta_1]\varphi \wedge [\beta_2]\varphi$

- $[\beta_1 \cdot \beta_2] \varphi = [\beta_1] [\beta_2] \varphi$

- $\blacktriangleright [\beta_1^*]\varphi = \varphi \wedge [\beta_1][\beta_1^*]\varphi$

Formulas for properties that cannot be expressed in HML

 the scientist always produces a publication after drinking two coffees in a row

 $[true^* \cdot coffee \cdot coffee](\langle pub \rangle true \wedge [\overline{pub}] false)$

Formulas for properties that cannot be expressed in HML

the scientist always produces a publication after drinking two coffees in a row

$$[true^* \cdot coffee \cdot coffee](\langle pub \rangle true \wedge [\overline{pub}] false)$$

the scientist never drinks beer

 $[true^* \cdot beer]$ false

Formulas for properties that cannot be expressed in HML

the scientist always produces a publication after drinking two coffees in a row

$$[true^* \cdot coffee \cdot coffee](\langle pub \rangle true \wedge [\overline{pub}] false)$$

the scientist never drinks beer

▶ $Inv(\varphi)$

$$[true^*]\varphi$$

Formulas for properties that cannot be expressed in HML

the scientist always produces a publication after drinking two coffees in a row

$$[true^* \cdot coffee \cdot coffee](\langle pub \rangle true \wedge [\overline{pub}] false)$$

the scientist never drinks beer

$$[true^* \cdot beer]$$
 false

 \blacktriangleright $Inv(\varphi)$

$$[true^*]\varphi$$

 $ightharpoonup Pos(\varphi)$ $\langle true^* \rangle \varphi$

Limitations of regular HML

Using regular HML we still cannot express some intuitive properties:

- lacktriangleright all computations inevitably reach a state which satisfies arphi
- for some execution φ holds everywhere

Limitations of regular HML

Using regular HML we still cannot express some intuitive properties:

- \blacktriangleright all computations inevitably reach a state which satisfies φ
- for some execution φ holds everywhere

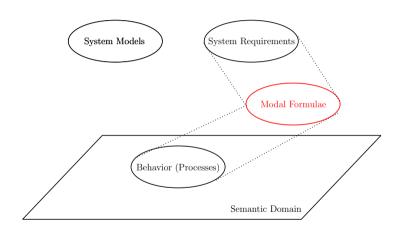
Why not use recursion?

- $Inev(\varphi)$ expressed by $X \stackrel{\text{def}}{=} \varphi \vee [true]X$
- Safe(φ) expressed by $X \stackrel{\text{def}}{=} \varphi \wedge \langle true \rangle X$

Summary

- ► Allowing sets inside modalities ⇒ more compact formulas
- Regular HML allows describing properties of infinite depth
- ► Some desirable properties cannot be described using regular HML

General Overview



Thank you very much.