HSST 2015
Learning-Based Testing for
Procedural and

Reactive Systems

Karl Meinke,
karim@kth.se
School of Computer Science and Communication
KTH Royal Institute of Technology Stockholm

0. Overview of the Course

Part 1: Introduction to Learning-based Testing
1. Requirements Based Black-box Testing

2. Learning Based Testing Paradigm (LBT)

3. Two Frameworks for Study

based on: K. Meinke, F. Niu and M. Sindhu: Learning-Based Software Testing:
a Tutorial, in: Proc. ISoLA 2011

Overview

Part 2: LBT for reactive systems: theory

Part 3: LBT for reactive systems: praxis

Part 4: LBT for procedural systems

1. Requirements Based

Black-Box Testing
1. Userrequirement SUT-Req
2. System under Test SUT
3. Test verdict pass/fail Oracle

SUT-Req pass/fail

Constraint solver Language runtime Constraint
checker

1.1. Procedural Code Example:

Newton s Square Root Algorithm
Postcondition

Precondition x > 0.0 | y*y —xl<e

TCG SUT | Oracle

Constraint solver Newton Code Constraint checker

\ 4 \ 4

x=4.0 satisfies x > 0.0 Verdict
x=4.0, y=2.0 satisfies | y*y — x| <¢

1.2. Key Problem: Feedback

Problem: How to modify this architecture to..

1.Improve next test case using previous test
outcomes

2.Execute a large number of good quality tests?
3.0btain good coverage?
4.Find bugs quickly?

2. Learning-Based Testing (LBT)

Meinke 2004, Proc. ISSTA-04

SUT-Req pass/fail

SUT-model M

Feedback
Learner

“aka. Model based testing without a model”

2.1. Basic Idea ...

LBT is a search heuristic that:

1.Partially and incrementally learns an SUT
model

2.Uses generalisation (inductive inference) to
predict unseen bugs!

3.Uses best prediction as next test case

4.lteratively refines model according to each
test outcome

2.2. Abstract LBT Algorithm

1. Start from null hypothesis M,

2. Foreachk>=0do

Model check M, against SUT-Req

Choose “best counterexample” i, from step 2.1
Execute i.,, on SUT to produce o, ,,

if (i,,;, 0,,,) satisfies ISUT-Req label i, as a bug
Use (i,,;, 0,,,) to refine M, to M, _,

If finished break.

SRR e B

When Step 2.2 fails we fall back on:
— Active learning queries
— Equivalence checking queries

Machine

Learning Testing

LBT

Model Formal
Checking Methods

2.3. Technical Difficulties

General problem is to find combinations of
models, requirements languages and solvers (M, L, S)

so that ...

1. models M are:
- expressive,
- compact,
partial and/or local (an abstraction method)
easy to construct and learn
behaviour is captured by L

2.M and L are feasible to model check with S
3. Supervised learning of M admits a notion of convergence

2.4. Convergence and Test Case Choice

How reliable are counterexamplesc,, ..., ¢, ?
Question of false negatives

Some (parts of) SUTs more easily learned than others
Measure local convergence around model points
Convergence is a proxy for model reliability ...

“Counterexamples from locally well-converged
regions are more reliable

2.5. Convergence and Coverage

Convergence is also proxy for coverage
If no counterexamples (n=0)

— choose point from least converged region
(breadth first search)

Question: Do formal models of approximation
and convergence always exist?

Answer: sometimes, but important exceptions
also exist.

3. Two Frameworks for Study:
Procedural Numerical Code

Generally data-oriented testing
1. Requirements Language — pre and postconditions
— first-order logic of real-closed fields
2. Models
— non-gridded n-dimensional piecewise polynomials
3. Model checker
— Hoon-Collins CAD algorithm, (Mathematica)
4. Learning algorithm
— n-dimensional polynomial interpolation

Framework 2:
Reactive Systems

Generally control-oriented testing

1. Requirements language = propositional linear
temporal logic (PLTL)

2. Model = FSM, Moore machine
3. Model checker = BDD/SAT-based checkers

4. Learning =regular inference algorithms

Why not Neural Networks?

Neural and deep neural networks have notable recent
success ... but several problems here ...

1. NN are implicit continuous models unsuited to
symbolic model checking

2. NN learning paradigm based on iterative training
(weight optimisation) on big data
Testing does not fit this paradigm
Single test case can take 1-10 minutes!

3. NN models are statistical in character

5. Conclusions

A promising approach ...

Flexible general heuristic,

* many models and requirement languages seem
possible

Many SUT types might be testable
* procedural, reactive, real-time, hybrid etc.

Open Questions
Benchmarking?
Scalability? abstraction, dimension reduction?
Bottlenecks? model checking, learning, SUT?

