

HSST 2015

Learning-Based Testing for Procedural and Reactive Systems

Karl Meinke,

karlm@kth.se

School of Computer Science and Communication KTH Royal Institute of Technology Stockholm

O. Overview of the Course

- Part 1: Introduction to Learning-based Testing
- 1. Requirements Based Black-box Testing
- 2. Learning Based Testing Paradigm (LBT)
- 3. Two Frameworks for Study

based on: K. Meinke, F. Niu and M. Sindhu: Learning-Based Software Testing:

a Tutorial, in: Proc. ISoLA 2011

Overview

Part 2: LBT for reactive systems: theory

Part 3: LBT for reactive systems: praxis

Part 4: LBT for procedural systems

1. Requirements Based Black-Box Testing

- 1. User requirement SUT-Req
- 2. System under Test *SUT*
- 3. Test verdict pass/fail *Oracle*

1.1. Procedural Code Example: Newton's Square Root Algorithm

1.2. Key Problem: Feedback

Problem: How to modify this architecture to..

- 1. Improve next test case using previous test outcomes
- 2. Execute a large number of good quality tests?
- 3. Obtain good coverage?
- 4. Find bugs quickly?

2. Learning-Based Testing (LBT)

Meinke 2004, Proc. ISSTA-04

"aka. Model based testing without a model"

2.1. Basic Idea ...

LBT is a search heuristic that:

- 1. Partially and incrementally learns an SUT model
- 2. Uses generalisation (*inductive inference*) to predict unseen bugs!
- 3. Uses best prediction as next test case
- 4. Iteratively refines model according to each test outcome

2.2. Abstract LBT Algorithm

- 1. Start from *null hypothesis* M_0
- 2. For each $k \ge 0$ do
 - 1. Model check M_k against SUT-Req
 - 2. Choose "best counterexample" i_{k+1} from step 2.1
 - 3. Execute i_{k+1} on SUT to produce o_{k+1}
 - 4. if (i_{k+1}, o_{k+1}) satisfies !SUT-Req label i_{k+1} as a bug
 - 5. Use (i_{k+1}, o_{k+1}) to refine M_k to M_{k+1}
 - 6. If *finished* break.

When Step 2.2 fails we fall back on:

- Active learning queries
- Equivalence checking queries

2.3. Technical Difficulties

General problem is to find combinations of models, requirements languages and solvers (M, L, S) so that ...

1. models *M* are:

- expressive,
- compact,
- partial and/or local (an abstraction method)
- easy to construct and learn
- behaviour is captured by L
- 2. M and L are feasible to model check with S
- 3. Supervised learning of M admits a notion of convergence

2.4. Convergence and Test Case Choice

- How reliable are counterexamples c_1 , ..., c_n ?
- Question of false negatives
- Some (parts of) SUTs more easily learned than others
- Measure local convergence around model points
- Convergence is a proxy for model reliability ...
 - "Counterexamples from locally well-converged regions are more reliable"

2.5. Convergence and Coverage

- Convergence is also proxy for coverage
- If \underline{no} counterexamples (n = 0)
 - choose point from least converged region (breadth first search)

- Question: Do formal models of approximation and convergence always exist?
- Answer: sometimes, but important exceptions also exist.

3. Two Frameworks for Study: Procedural Numerical Code

Generally data-oriented testing

- 1. Requirements Language pre and postconditions
 - first-order logic of real-closed fields
- 2. Models
 - non-gridded n-dimensional piecewise polynomials
- 3. Model checker
 - Hoon-Collins CAD algorithm, (Mathematica)
- 4. Learning algorithm
 - n-dimensional polynomial interpolation

Framework 2: Reactive Systems

Generally control-oriented testing

- Requirements language = propositional linear temporal logic (PLTL)
- 2. Model = FSM, Moore machine
- 3. Model checker = BDD/SAT-based checkers
- 4. Learning = regular inference algorithms

Why not Neural Networks?

Neural and deep neural networks have notable recent success ... but several problems here ...

- NN are implicit continuous models unsuited to symbolic model checking
- 2. NN learning paradigm based on iterative training (weight optimisation) on big data
 - Testing does not fit this paradigm
 - Single test case can take 1-10 minutes!
- 3. NN models are statistical in character

5. Conclusions

- A promising approach ...
- Flexible general heuristic,
 - many models and requirement languages seem possible
- Many SUT types might be testable
 - procedural, reactive, real-time, hybrid etc.

Open Questions

- Benchmarking?
- Scalability? abstraction, dimension reduction?
- Bottlenecks? model checking, learning, SUT?