System Validation: Describing (Multi-)actions

Mohammad Mousavi and Jeroen Keiren

Open Universiteit

General Overview

From Processes to Their Algebra

Motivation

Graphical representation is monstrously big

From Processes to Their Algebra

Motivation

- Graphical representation is monstrously big
- Manipulating and analyzing the graphical representation is virtually impossible

From Processes to Their Algebra

Motivation

- Graphical representation is monstrously big
- Manipulating and analyzing the graphical representation is virtually impossible

Solution

Use a compact textual presentation and algebraic rules for manipulating them

Actions

- Atomic building blocks of processes
- ► May represent:
 - internal activities
 - sending messages
 - receiving messages
 - the result of a synchronization
- May take parameters, typically denoted by a(d) of any Abstract Data Type

> act rcv_coin: Euro;
rcv_coin(one_euro)

- > act rcv_coin: Euro; rcv_coin(one_euro)
- > act snd_number,rcv_number: Nat; snd_number(1)

- > act rcv_coin: Euro; rcv_coin(one_euro)
- > act snd_number,rcv_number: Nat; snd_number(1)
- > act ack_number: Bool # Nat; ack_number(true, 42)

- > act rcv_coin: Euro; rcv_coin(one_euro)
- > act snd_number,rcv_number: Nat; snd_number(1)
- act ack_number: Bool # Nat; ack_number(true, 42)

Note

Actions are **not functions** or procedures, in the programming languages' sense

A number of actions happening at the same time receive(d) | send(d)

- A number of actions happening at the same time receive(d) | send(d)
- ► Types of multi-actions:

- A number of actions happening at the same time receive(d) | send(d)
- Types of multi-actions:
 - τ internal (invisible) action

- A number of actions happening at the same time receive(d) | send(d)
- Types of multi-actions:
 - τ internal (invisible) action
 - a unparameterised action

- A number of actions happening at the same time receive(d) | send(d)
- Types of multi-actions:
 - τ internal (invisible) action
 - a unparameterised action
 - $a(\vec{d})$ action with parameters

- A number of actions happening at the same time receive(d) | send(d)
- Types of multi-actions:
 - τ internal (invisible) action
 - a unparameterised action
 - $a(\vec{d})$ action with parameters
 - $\alpha \mid \beta$ composite multi-action consisting of α and β

Basic Axioms for Multi-Actions

Axioms for multi-actions used in reasoning about processes

MA1
$$\alpha | \beta = \beta | \alpha$$

MA2 $(\alpha | \beta) | \gamma = \alpha | (\beta | \gamma)$
MA3 $\alpha | \tau = \alpha$

Example

```
receive(d) | send(d) = send(d) | receive(d) | \tau by MA1 and MA3
```

Modelling of communication requires reasoning rules for multi-actions.

Modelling of communication requires reasoning rules for multi-actions.

Example

If $\mathit{send} \mid \mathit{receive}$ communicate to comm we need <code>rules</code> to do transformation

Modelling of communication requires reasoning rules for multi-actions.

Example

If send \mid receive communicate to comm we need rules to do transformation

Auxiliary operators:

• Removal of multi-actions $\alpha \setminus \beta$

Modelling of communication requires reasoning rules for multi-actions.

Example

If $\mathit{send} \mid \mathit{receive}$ communicate to comm we need <code>rules</code> to do transformation

Auxiliary operators:

- Removal of multi-actions $\alpha \setminus \beta$
- Inclusion between multi-action $\alpha \sqsubseteq \beta$

Modelling of communication requires reasoning rules for multi-actions.

Example

If $\mathit{send} \mid \mathit{receive}$ communicate to comm we need <code>rules</code> to do transformation

Auxiliary operators:

- Removal of multi-actions $\alpha \setminus \beta$
- ▶ Inclusion between multi-action $\alpha \sqsubseteq \beta$
- Stripping data off $\underline{\alpha}$

$$\begin{array}{ll} \mathsf{MD1} & \tau \setminus \alpha = \tau \\ \mathsf{MD2} & \alpha \setminus \tau = \alpha \\ \mathsf{MD3} & \alpha \setminus (\beta \mid \gamma) = (\alpha \setminus \beta) \setminus \gamma \\ \mathsf{MD4} & (a(d) \mid \alpha) \setminus a(d) = \alpha \\ \mathsf{MD5} & (a(d) \mid \alpha) \setminus b(e) = a(d) \mid (\alpha \setminus b(e)) & \text{if } a \neq b \text{ or } d \not\approx e \end{array}$$

Example

► (send(d)|error|receive(d))\(send(d)|receive(d)) = error

•
$$a \setminus a = \tau$$

$$\begin{array}{ll} \mathsf{MS1} & \tau \sqsubseteq \alpha = true \\ \mathsf{MS2} & a \sqsubseteq \tau = false \\ \mathsf{MS3} & a(d) \mid \alpha \sqsubseteq a(d) \mid \beta = \alpha \sqsubseteq \beta \\ \mathsf{MS4} & a(d) \mid \alpha \sqsubseteq b(e) \mid \beta = a(d) \mid (\alpha \setminus b(e)) \sqsubseteq \beta & \text{if } a \not\equiv b \text{ or } d \not\approx e \end{array}$$

Example

•
$$a(1) \sqsubseteq a(1) | b(2) = true$$

•
$$a(1) \sqsubseteq b(2) = false$$

$\begin{array}{l} \textbf{Multi-Actions} \\ \textbf{Axioms for Stripping Data Off Multi-Actions } \underline{\alpha} \end{array}$

$$\begin{array}{ll} \mathsf{MAN1} & \underline{\tau} = \tau \\ \mathsf{MAN2} & \underline{a(d)} = a \\ \mathsf{MAN3} & \underline{\alpha \mid \beta} = \underline{\alpha} \mid \underline{\beta} \end{array}$$

Example

$$\frac{ack_number(true, 42) | error}{\overset{MAN3}{=}} \frac{ack_number(true, 42) | error}{ack_number | error}$$

Show using the axioms that $(b \mid a(d)) \setminus a(d) = b$

 $(b \mid a(d)) \setminus a(d)$

Show using the axioms that $(b | a(d)) \setminus a(d) = b$

$$(b \mid a(d)) \setminus a(d)$$

 $\mathsf{MA1} \quad \alpha \,|\, \beta = \beta \,|\, \alpha$

Show using the axioms that $(b \mid a(d)) \setminus a(d) = b$

$$(b \mid a(d)) \setminus a(d) \stackrel{MA1}{=} (a(d) \mid b) \setminus a(d)$$

 $\mathsf{MA1} \quad \alpha \,|\, \beta = \beta \,|\, \alpha$

Show using the axioms that $(b | a(d)) \setminus a(d) = b$

$$(b \mid a(d)) \setminus a(d) \stackrel{MA1}{=} (a(d) \mid b) \setminus a(d)$$

 $\mathsf{MD4} \quad (\mathsf{a}(\mathsf{d}) \,|\, \alpha) \setminus \mathsf{a}(\mathsf{d}) = \alpha$

Example

Show using the axioms that $(b | a(d)) \setminus a(d) = b$

 $\mathsf{MD4} \quad (\mathsf{a}(\mathsf{d}) \,|\, \alpha) \setminus \mathsf{a}(\mathsf{d}) = \alpha$

General Overview

Thank you very much.