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Modal µ-calculus

Some properties for which we need the µ-calculus:

I For some execution ϕ holds everywhere

νX .ϕ ∧ ([true]false ∨ 〈true〉X )

I Eventually ϕ will hold (in every execution)

µX .ϕ ∨ (〈true〉true ∧ [true]X )
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Semantics of µ-calculus
Environment

I With each formula associate a set of states for which
it is satisfied

JϕK ⊆ S

I How to deal with recursion variable X?

I Make an assumption on states satisfying X , record
assumption in environment η : X→ 2S .

I η[X := T ](X ) = T , η[X := T ](Y ) = η(Y ) if X 6= Y

I Use this assumption to compute solution
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Semantics of formula

JϕKηL is set of states satisfying ϕ in environment η. Similar

to semantics of HML, but:

JX KηL = η(X )

JµX .ϕKηL = µT ⊆ S .Φη(T )

JνX .ϕKηL = νT ⊆ S .Φη(T )

Φη(T ) = JϕKη[X :=T ]
L
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Semantics of recursion

Φη(T ) = JϕKη[X :=T ]
L

Observe

I monotonic (U ⊆ V =⇒ Φη(U) ⊆ Φη(V ))

I S finite

Therefore (Knaster-Tarski):

JµX .ϕKηL =
⋃
i

Φi
η(∅)

JνX .ϕKηL =
⋂
i

Φi
η(S)
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Computing fixed points

Due to Knaster-Tarski, use fixed point iteration

I Φη(T ) = JϕKη[X :=T ]
L

I Φ0(T ) = T

I Φn+1 = Φ(Φn(T ))

I there exists m s.t. Φm+1(T ) = Φm(T )

I For µ, start with T = ∅, for ν start with T = S ;
iterate until m is found
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Example

µX .[a]false ∨ 〈true〉X

s0s1 s2

a

a a

a

Φ(T ) = J[a]false ∨ 〈true〉Kη[X :=T ]

8 / 1



Previous Page Next Page

Example

µX .[a]false ∨ 〈true〉X

s0s1 s2

a

a a

a

Φ(T ) = J[a]false ∨ 〈true〉Kη[X :=T ]

8 / 1



Previous Page Next Page

Example

µX .[a]false ∨ 〈true〉X

s0s1 s2

a

a a

a

Φ(T ) = J[a]false ∨ 〈true〉Kη[X :=T ]

Φ0(∅) = ∅
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Example

µX .[a]false ∨ 〈true〉X

s0s1 s2

a

a a

a

Φ(T ) = J[a]false ∨ 〈true〉Kη[X :=T ]

Φ0(∅) = ∅
Φ1(∅) = J[a]false ∨ 〈true〉Kη[X :=∅]

= J[a]falseKη[X :=∅] ∪ J〈true〉X Kη[X :=∅]

= {s2} ∪ ∅
= {s2}
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Example

µX .[a]false ∨ 〈true〉X

s0s1 s2

a

a a

a

Φ(T ) = J[a]false ∨ 〈true〉Kη[X :=T ]

Φ1(∅) = {s2}
Φ2(∅) = J[a]false ∨ 〈true〉Kη[X :={s2}]

= J[a]falseKη[X :={s2}] ∪ J〈true〉X Kη[X :={s2}]

= {s2} ∪ {s0}
= {s0, s2}
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Example

µX .[a]false ∨ 〈true〉X

s0s1 s2

a

a a

a

Φ(T ) = J[a]false ∨ 〈true〉Kη[X :=T ]

Φ2(∅) = {s0, s2}

Φ3(∅) = J[a]false ∨ 〈true〉Kη[X :=X 2]

= J[a]falseKη[X :=X 2] ∪ J〈true〉X Kη[X :=X 2]

= {s2} ∪ {s0} = {s0, s2}
= Φ2(∅)
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s0s1 s2

a

a a

a
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Example

νX .〈b〉true ∧ [b]X

s0

s1 s2 t1

t0
a a

b

b

a

b

Φ(T ) = 〈b〉true ∧ [b]X
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Example

νX .〈b〉true ∧ [b]X

s0

s1 s2 t1

t0
a a

b

b

a

b

Φ(T ) = 〈b〉true ∧ [b]X

Φ0(S) = S
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Example

νX .〈b〉true ∧ [b]X

s0

s1 s2 t1

t0
a a

b

b

a

b

Φ(T ) = 〈b〉true ∧ [b]X

Φ0(S) = S

Φ1(S) = J〈b〉true ∧ [b]X Kη[X :=S]

= J〈b〉trueKη[X :=S] ∩ J[b]X Kη[X :=S]

= {s1, s2, t1} ∩ {s0, s1, s2, t0, t1}
= {s1, s2, t1}
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Example

νX .〈b〉true ∧ [b]X

s0

s1 s2 t1

t0
a a

b

b

a

b

Φ(T ) = 〈b〉true ∧ [b]X

Φ1(S) = {s1, s2, t1}
Φ2(S) = . . . = J〈b〉trueKη[X :={s1,s2,t1}] ∩ J[b]X Kη[X :={s1,s2,t1}]

= {s1, s2, t1} ∩ {s0, s1, s2, t0, t1}
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Example

νX .〈b〉true ∧ [b]X

s0

s1 s2 t1

t0
a a

b

b

a

b

Φ(T ) = 〈b〉true ∧ [b]X

Φ1(S) = {s1, s2, t1}
Φ2(S) = Φ1(S)
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Thank you very much.
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