
Chapter 10
Verifying Java Card Programs

Wojciech Mostowski

10.1 Introduction

One of the fundamental assumptions of the KeY project at its beginning was that it
should support verification of an actual programming language and handle realistic
programs. Back then, complete handling of arbitrary Java programs was still consid-
ered an unreachable goal in source code based interactive verification. For that reason
a simpler, yet actually existing and officially developed, Java technology was chosen
as our verification target, namely Java Card—a considerably stripped down version
of Java for programming smart cards [Chen, 2000]. The additional motivation for
choosing this particular technology were the corresponding application areas that are
subject to strict security requirements. Nowadays, smart cards are widely used in the
financial sector (bank cards), telecommunications (SIM cards), identity (electronic
passports and identity cards), and transportation (electronic tickets). Many of the
products are indeed developed on the Java Card platform, in particular, the Dutch
biometric passport is based on the Java Card technology. The security requirements
of such applications and, sadly, still often occurring security problems in this area1

highly justify the use formal verification.
In fact, other verification tools back in the days have chosen the Java Card dialect

for similar reasons. The KIV [Balser et al., 2000], Krakatoa [Marché et al., 2004], or
Jack [Burdy et al., 2003b] tools all explicitly mention Java Card as a target language
in the corresponding publications. Furthermore, Java Card was also in the center of
the EU VerifiCard project started in 2001 [Jacobs et al., 2001], that consolidated the
efforts to provide verification techniques for Java based smart cards.

Many research teams targeted their effort towards Java Card, but the KeY sys-
tem was the first tool to implement extensions to support an initially overseen by
researchers feature of Java Card, the atomic transaction mechanism [JavaCardRTE,
Chap. 7]. This extension of the Java Card Virtual Machine allows one to group

1 Two recent high profile cases of security flaws in smart card based applications are the Dutch
OV-chipcard [Garcia et al., 2008] and one of the smart card based payment authentication protocol
for Internet banking [Blom et al., 2012].

353

354 10 Verifying Java Card Programs

assignments into atomic blocks in the context of two types of writable memory on
smart card chips: volatile RAM and persistent EEPROM. From the point of view of
a formal verification system, the most complicating factor of the transaction mech-
anism is the possibility of a programmatic abort of an on-going transaction. The
result of such an abort is a program that continues its execution, but with selected
variable assignments reverted according to the complex Java Card Virtual Machine
transaction rules.

Our formalization of Java Card transactions for the previous generation of the
KeY system [Beckert and Mostowski, 2003, Mostowski, 2006] was admittedly rather
heavyweight with deep changes in the implementation of KeY. Nevertheless, the
formalization provided a complete and sound verification framework for Java Card
programs. This was illustrated with realistically sized case studies described by
Mostowski [2005, 2007].

In this chapter, we discuss a new solution tailored to the explicit heap model of KeY
as described in detail in Chapter 3. The core of the new solution is the simultaneous
use of two heaps during the verification. The first heap is used as usual, and keeps
track of the current reachable state of the program for the purpose of evaluating
properties to be verified. The second additional heap is used to keep a backup copy
of the main heap for the purpose of transaction roll-back in case of an abort. The
resulting solution turns out to be very simple and clean, and most importantly, is very
modular with respect to the rest of the JavaDL. Further simplifications of our new
formalization come from a more pragmatic approach to the notion of a verifiable
Java Card program. Following our practical experience with Java Card technology
[Mostowski and Poll, 2008], rather than to support every possible and contrived use of
transaction related constructs, we opted to support only patterns commonly agreed as
safe by security experts [Pallec et al., 2012]. Programs not adhering to these patterns
cannot be verified because of the design of the formalization. Furthermore, apart
from supporting Java Card, the idea of using more than one heap, in general arbitrary
many heaps, provides solutions for other areas of research in Java verification, in
particular for permission-based reasoning about concurrent programs.

The chapter starts with introducing the Java Card technology in more detail
in the next section, and then continues with explaining the details of our current
formalization of transactions based on two heaps in Section 10.3. In Section 10.5 we
discuss the (transparent) extensions to JML to accommodate multiple heap references
also on the specification level. Section 10.6 discusses the verification of several Java
Card example programs. Finally, in Section 10.7 we discuss the applications of
reasoning based in multiple heaps in other areas of verification.

10.2 Java Card Technology

In the following, we concentrate on features of Java Card relevant for this chapter. A
comprehensive overview of the Java Card technology is described by Chen [2000],
and [JavaCardRTE, JavaCardVM] provide a technical reference.

10.2. Java Card Technology 355

The Java Card technology is now at version 3.0 and divided into two editions:
Classic and Connected. In this chapter, we refer to the classic edition which is still the
established standard in the smart card industry and is essentially the same as previous
Java Card versions that were only released as one edition. The connected edition
is a feature-rich regular Java edition and no longer a subset of Java like the classic
edition. However, the connected edition remains still to be fully accepted as it is not
widely used by the industry, yet. Also, Java Card devices actually implementing the
3.0 connected version are still scarce, despite the fact that the connected variant of
Java Card was proposed more than 8 years ago.

The Java Card technology in general provides means to program smart cards with
Java. The classic edition of Java Card consists of a language specification, which
defines the subset of permissible Java in the context of smart cards, a Java Card
Virtual Machine specification, which defines the semantics of the Java byte-code
when run on a smart card, and finally the Java Card API, which provides access
to the specific routines usually found on smart cards, in particular the transaction
mechanism. What makes Java Card easier for verification is the lack of concurrency,
floating-point numbers, or dynamic class loading, and a very small API (less than 100
classes). The important feature that adds complexity to the Java Card environment
compared to Java is that programs can directly operate on two memories built into
the card chip. Any data allocated in the EEPROM memory is persistent and kept
between card sessions, the data that resides in RAM is transient and always lost at
the end of a card session. That is, EEPROM provides storage facilities to the card,
and RAM provides computation space. The following are the memory allocation
rules:

• all local variables are transient,
• all newly created objects and arrays are by default persistent, and
• when allocated with a dedicated API call, an array (but not an object) can be

made transient.

Note the important difference between a reference to an object and the actual object
contents. While the object fields are stored in the persistent memory, the object
reference can be kept in a local variable and be transient itself. A garbage collector
is not obligatory in Java Card either. Thus, careless handling of allocated references
leads to memory leaks, something that is often addressed in Java Card programming
guidelines [Pallec et al., 2012]. Any Java reference, once allocated in its target
memory, is transparent to the programmer from the syntax point of view, and it
is only the underlying Java Card virtual machine that takes appropriate actions
according to the memory type associated with a given reference.

Example 10.1. Suppose the following program would be run in a Java Card execution
environment:

Java Card
class MyClass {

int persistentField;

356 10 Verifying Java Card Programs

void method(int parameter) {
int localVariable = parameter * 2;
this.persistentField = localVariable;
if(persistentField < 0) {
MyClass mc = new MyClass();
mc.method(persistentField);

}
}

}

Java Card

Being an instance field of a class, the value of persistentField is stored in a per-
manent chip memory location. The local variables parameter and localVariable
are stored in the transient RAM memory and are forgotten upon method exit. The
assignment this.persistentField = localVariable; effectively copies data
from one type of memory to another type, but this transfer between different memory
types is not explicit in the program. The mc variable is also local and hence transient,
however, the contents of the freshly created object of class MyClass to which mc
refers is part of the persistent storage, and so are all of its fields. Upon return from
method, a memory leak occurs—the reference to the freshly created object that
was stored only in the local variable is lost. On Java Card devices without garbage
collection, such leaked memory is irrecoverable.

Additionally, this particular program would very likely cause a memory overuse
problem on an actual device. The continuous allocations of MyClass would quickly
exhaust the limited amount of available persistent memory (which is usually in the
range of 64kB to 128kB), but even sooner the RAM memory (in the range of 4kB)
would be filled with the call stack caused by the recursion and cause a stack overflow
exception. Hence, it is often advisable not to use recursive method calls on Java Card,
and not to do postinitialization object allocation. We come back to the issue of object
allocation later in Section 10.3.3.

Objects allocated in EEPROM, like in the example above, provide the only
permanent storage to an application. To maintain consistent updates of this persistent
data, Java Card offers the atomic transaction mechanism accessible through the API.
The following is a brief, but complete summary of the semantics of transactions:
Updating a single field or array element is always atomic. Updates can be grouped
into transaction blocks, an API call to the static method JCSystem.beginTransac-
tion() opens such a block; it is ended by a commitTransaction() call, an explicit
abortTransaction() call, or an implicit abort caused by an unexpected program
termination (e.g., card power loss). A commit guarantees that all the updates in the
block are executed in one atomic step. An abort reverts the contents of the persistent
memory to the state before the transaction was entered. Note that an explicit abort
does not terminate the whole application, only cancels out persistent updates from
the corresponding transaction. The program continues execution with the persistent
updates reverted but all the transient updates are still in effect.

10.3. Java Card Transactions on Explicit Heaps 357

Example 10.2. The following program uses a transaction to ensure consistent update
of persistent fields a and b:

Java Card
class MyClass {

int a, b;

void transferFromAtoB(int num) {
JCSystem.beginTransaction();
a = a - num;
b = b + num;
if(a < 0 || b < 0) {

// Too much transfered / overflow
JCSystem.abortTransaction();

} else {
JCSystem.commitTransaction();

}
}

}

Java Card

In case that either of the two fields goes beyond its assumed bound (they are supposed
to be nonnegative), the transaction is aborted, and the values of both fields are reverted
to their respective values when the transaction was started. Regardless of the outcome
of the transaction, the program could continue its execution and, e.g., try to update
a and b with a smaller value, say num/2. Finally, had the local num variable itself
been updated in any way within the transaction, it would maintain its updated value
regardless of the transaction outcome.

Finally, the API provides so-called nonatomic methods to bypass the transaction
mechanism. A nonatomic update of a persistent array element is never reverted by an
abort, provided the same array was not manipulated with regular assignments earlier
in the same transaction. We postpone illustrative examples of nonatomic updates to
the next section when we explain the details of the formalization of such updates.

10.3 Java Card Transactions on Explicit Heaps

In the following, driven by examples, we gradually present the complete formalization
of the Java Card transaction semantics in JavaDL using two heap variables. To start
with, we introduce synthetic transaction statements to the Java syntax. That is,
the calculus should allow for symbolic execution of #beginTr, #commitTr, and
#abortTr synthetic statements that define the transaction boundaries in the verified
program. Bridging the actual API transaction calls from the JCSystem discussed
in Section 10.2 to these logic-only statements is a straightforward extension of the

358 10 Verifying Java Card Programs

verification system. Then, consider the following snapshot of a more realistic Java
Card program, where the fields balance and opCount are persistent, permanently
storing the current balance and operation count of some payment application. The
local variables change and newBalance are transient:

Java Card
int newBalance = 0;
#beginTr;

this.opCount++;
newBalance = this.balance + change;
if(newBalance < 0) {
#abortTr;

} else {
this.balance = newBalance;
#commitTr;

}

Java Card

Following the rules from Chapter 3, symbolic execution of this program piece results
in the following sequence of state updates to the heap and local variables—ignoring
the transaction statements for now:

{newBalace := 0}
{heap := store(heap,self ,opCount,selectint(heap,self ,opCount)+1)}
{newBalance := selectint(heap,self ,balance)+ change}
{heap := store(heap,self ,balance,newBalance)}

The symbolic execution of the if statement causes proof splitting, and the last
update only appears on the else proof branch where newBalance is assumed to be
nonnegative.

After further simplification, these state updates can be applied to evaluate a
postcondition. It could, e.g., query the new value of operation count, i.e., the term
selectint(heap,self ,opCount). The evaluation of this term would indicate a one unit
increase with respect to the value stored on the heap before this code is executed.

10.3.1 Basic Transaction Roll-Back

Now let us consider what is required to model the basic semantics of an abort, first
under the assumption of a simplified Java Card definition, in which updates to local
variables should be kept while updates to persistent locations should be rolled back
to the state before the transaction. Up till now, data in these persistent locations are
synonymous with the data stored on the heap in the logic. Hence, under the above
assumption, it is sufficient to roll back the value of the whole heap. This can be
done by introducing two simple symbolic execution rules for transaction statements

10.3. Java Card Transactions on Explicit Heaps 359

#beginTr and #abortTr that respectively store and restore the value of the heap to
and from a temporary heap variable savedHeap (the 〈[·]〉 operator indicates that the
rule is applicable to both the box and the diamond modality):

beginTransaction
=⇒U {savedHeap := heap}〈[π ω]〉φ

=⇒U 〈[π #beginTr;ω]〉φ

abortTransaction
=⇒U {heap := savedHeap}〈[π ω]〉φ

=⇒U 〈[π #abortTr;ω]〉φ

This can be done and works as expected because the heap variable has the call-by-
value characteristics. Now the state updates (on the negative newBalance branch)
of our example program are the following:

{newBalace := 0}
{savedHeap := heap}
{heap := store(heap,self ,opCount,selectint(heap,self ,opCount)+1)}
{newBalance := selectint(heap,self ,balance)+ change}
{heap := savedHeap}

Whatever terms referring to heap contents are to be evaluated with these updates, the
result are the values on the heap at the point where it was saved in the savedHeap
variable. The commit statement needs no special handling apart from silent stepping
over this statement. In this case, the saved value of the heap in the savedHeap variable
is simply forgotten until a possible subsequent new transaction where savedHeap is
freshly overwritten with a more recent heap.

These rules are sufficient for superficial treatment of transactions in JavaDL under
the assumption made at the beginning of this section. Note that, so far, no new or
modified assignment rules of any kind were introduced, yet assignments can be
canceled.

10.3.2 Transaction Marking and Balancing

The two rules we just introduced do not enforce any order on the transaction state-
ments. Indeed, they allow to successfully verify programs:

#abortTr; #beginTr; or #commitTr; #commitTr;

One solution to enforce balancing of transactions is to keep track of a transaction
depth counter and make additional checks upon transaction statements. In fact, this
is how the Java Card API methods enforce balancing. In Java Card, transactions
cannot be nested, i.e., the maximum allowed depth is always 1. However, by the same
specification, an open transaction does not have to be terminated within the same
syntactical block of a program, it is only required that the transaction is eventually
terminated within the same card session, if not, the transaction is aborted by the

360 10 Verifying Java Card Programs

system itself. Thus, in principle, a transaction can be initiated in one method, and
terminated in another.

In the logic we opt for a more restrictive use of transactions, with the following
rationale. Java Card security guidelines [Pallec et al., 2012] ban programs with large
transaction blocks spanning over several methods (due to the high risk of overrunning
the transaction buffer). A logic calculus allowing for such arbitrary “spreading” of
transaction statements would need to carry around complete information about the
state of a transaction across method invocations, a complication that would make
proofs unnecessarily more cluttered and difficult.

Following this rationale, our formalization not only relies on this transaction use
restricted to one method, but also enforces it, in the following way. A transaction
marker TR attached to any modality indicates that the current execution context of
the verified program is an open transaction. In practice, such a marked modality is
simply a separate modality 〈TR·〉 (or [TR·] as the case may be). Rules for handling
transaction opening and closing statements defined only for the adequate modalities
automatically enforce correct transaction balancing. Similarly, the absence of a
logic rule for an empty transaction modality prevents closing proof goals with open
transactions. Overall this forces a complete transaction block to appear in a single
verification context, i.e., one method. Furthermore, special array assignment rules
(which we introduce shortly) are also defined for the transaction context only, without
cluttering any nontransaction context. This keeps regular Java verification efforts
clear of any transaction artifacts in the logic without the need to introduce any special
Java Card modes or switches in the prover or similar mechanisms.

The new rules for the transaction statements are the following, now with an
explicit rule for the commit statement, in which nothing happens to the heap variable,
but the transaction context is canceled out by changing the transaction modality
〈[TR·]〉 back to 〈[·]〉:

beginTransaction
Γ =⇒U {savedHeap := heap}〈[TRπ ω]〉φ ,∆

Γ =⇒U 〈[π #beginTr;ω]〉φ ,∆

abortTransaction
Γ =⇒U {heap := savedHeap}〈[π ω]〉φ ,∆

Γ =⇒U 〈[TRπ #abortTr;ω]〉φ ,∆

commitTransaction
Γ =⇒U 〈[π ω]〉φ ,∆

Γ =⇒U 〈[TRπ #commitTr;ω]〉φ ,∆

10.3.3 Object Creation and Deletion

In Section 10.2 we already mentioned that object allocation on Java Card requires
special attention due to limited memory of a smart card and absence of a garbage
collector. Because of this, according to the Java Card specification, objects created in-
side transactions require detailed consideration. In short, when aborting a transaction
all objects created in that transaction need to be deallocated, regardless of whether
these objects are still referenced from objects outside of the transaction. To prevent

10.3. Java Card Transactions on Explicit Heaps 361

dangling references, all such references to the deleted objects must be replaced with
null by the Java Card virtual machine. In other words, the Java Card virtual machine
should perform an explicit, forced garbage collection upon transaction abort.

This causes problems for our logic, which, being a logic for garbage-collected
Java, was never designed to do any object allocation back-tracking (probably, none
of the logics for Java are). However, this is also problematic in the actual Java Card
virtual machine implementations. It is not uncommon for the implementations to be
buggy and lead to serious security issues, as reported by Mostowski and Poll [2008].
Because of that, both security guidelines and newer Java Card specifications strongly
discourage object allocation inside transactions altogether.

In our formalization of transactions, we take the same approach, we do not allow
objects to be allocated in transaction contexts. This is simply done by not providing
any object allocation rules for the transaction modalities.

10.3.4 Persistent and Transient Arrays

By default, in Java Card new objects and arrays are allocated in the persistent memory.
For scenarios where an object needs to be allocated in transient memory, the Java
Card API offers special static methods that redirect allocation to the transient memory,
namely:

• makeTransientBooleanArray(short size, byte transientType),
• makeTransientByteArray(short size, byte transientType),
• makeTransientShortArray(short size, byte transientType),
• makeTransientObjectArray(short size, byte transientType).

Hence, only arrays can be allocated in transient memory, contents of other objects
are always persistent. When allocating transient arrays, one also specifies, through
the transientType argument, the moment when the transient memory is cleared.
In Java Card the transient memory can be cleared either upon card reset, i.e., when
the card session is terminated, or already upon application termination. The latter is
useful in practice when, e.g., one application does not wish for any other application
to access the data it worked on for security reasons. However, for our formalization,
this is irrelevant. But, to be consistent with the API philosophy, in the following we
keep using a number to describe the different types of Java Card memory, rather than
just a Boolean differentiating between transient and persistent memory types.

In the next step we need to address the issue of separate transaction treatment for
persistent and transient arrays in Java Card. Our solution is general enough to also
consider the possibility of regular objects to be transient, but we refer only to arrays
in our explanations.

So far in our formalization, we roll back the whole contents of the heap. The
actual Java Card transaction semantics require that the contents of transient arrays,
allocated by the above API methods, are never rolled back. Since in JavaDL all
arrays are stored on the heap, we somehow need to introduce a selective roll-back

362 10 Verifying Java Card Programs

mechanism. We achieve this with the following. Whenever an array element is
updated in a transaction we check for the persistency type of the array. The check
itself is simply done by introducing an additional implicit integer field to all objects,
called <transient>, that maintains the information about the persistency type of
an object. Standard JavaDL allocation rules set this field to 0 that denotes persistent
objects, while the dedicated API methods for creating transient arrays specify this
field to reflect the transientType argument discussed above.

Then, when handling assignments, for persistent arrays we take no additional
action, for transient arrays we update the value on the heap and additionally update
the value on the backup heap savedHeap. During an abort, the regular heap is restored
to the contents of the backup heap that now also includes updates to transient arrays
that were not supposed to be rolled back. The resulting assignment rule for arrays is
the following (for simplicity we skip array bounds checks and similar here, these are
no different from the rules discussed in Section 3.6.2):

arrayAssignTransaction

U (a.<transient> .
= 0) =⇒{heap := store(heap,a, i,se)}〈[TRπ ω]〉φ

U (a.<transient>> 0) =⇒ {savedHeap := store(savedHeap,a, i,se)}
{heap := store(heap,a, i,se)}〈[TRπ ω]〉φ

=⇒U 〈[TRπ a[i]=se;ω]〉φ

Assuming that arrays tr and ps are, respectively, transient and persistent, the sym-
bolic execution of this program:
tr[0] = 0;
ps[0] = 0;
#beginTr;
tr[0] = 1;
ps[0] = 1;

#abortTr;

results in the following sequence of state updates:

{heap := store(heap, tr,0,0)}{heap := store(heap,ps,0,0)}
{savedHeap := heap}
{heap := store(heap, tr,0,1)}{savedHeap := store(savedHeap, tr,0,1)}
{heap := store(heap,ps,0,1)}
{heap := savedHeap}

With these updates, the evaluation of terms selectint(heap,ps,0) and selectint(heap,
tr,0) results in 0 and 1, respectively, as required by the Java Card transaction seman-
tics.

10.3. Java Card Transactions on Explicit Heaps 363

10.3.5 Nonatomic Updates

The last quirk in the semantics of Java Card transactions are the so-called nonatomic
updates of persistent array elements. Such updates are invoked by dedicated API calls
and they bypass transaction handling, i.e., no roll-back of data updated nonatomically
is ever performed, similarly to local variables and transient array updates, even though
the data is persistent. By this definition updates to transient arrays as defined by Java
Card are in fact nonatomic, as they are indeed never rolled back either. We have just
introduced a mechanism that prevents the roll-back of transient arrays, by checking
the <transient> field of the array and providing corresponding state updates. To
extend this behavior to persistent arrays, we allow for the implicit <transient>
field of an array to be mutable in our logic. In turn, we can temporarily change
the assignment semantics for an array by manipulating the <transient> field.
Concretely, a nonatomic assignment to a persistent array element can be modeled by
first setting the <transient> field to a positive value, then performing the actual
assignment, and then changing the value of <transient> back to 0. Hence, a
nonatomic assignment a[i] = se, where a is a persistent array, is simply modeled
as:
a.<transient> = 1; a[i] = se; a.<transient> = 0;

Then, the array assignment rule we provided above introduces the necessary updates
to the regular and backup heaps to achieve transaction bypass, i.e., a nonatomic
assignment.

Similarly to transient memory allocation, in Java Card the nonatomic updates are
delegated to dedicated API methods. Hence, the manipulation of the <transient>
field is delegated to the reference implementation of these API methods, and this
emulation of nonatomic assignments is easily achieved in the actual Java Card
programs to be verified by KeY.

Unfortunately, there is one more additional condition that Java Card defines
for nonatomic updates that we need to check. A request for a nonatomic update
becomes effective only if the persistent array in question has not been already updated
atomically (i.e., with a regular assignment) within the same transaction. If such an
update has been performed, any subsequent updates to the array are always atomic
within the same transaction and rolled back upon transaction abort. We illustrate
this with the following two simple programs operating on a persistent array a, for
simplicity we mark a nonatomic assignment with #=, which would otherwise require
a lengthy call to a static API method:

a[0] = 0;
#beginTr;
a[0] #= 1;
a[0] = 2;

#abortTr;
assert a[0] == 1;

a[0] = 0;
#beginTr;
a[0] = 2;
a[0] #= 1;

#abortTr;
assert a[0] == 0;

364 10 Verifying Java Card Programs

The program on the left results in a[0] equal to 1 (a nonatomic update is in effect),
the program on the right rolls a[0] back to 0, as the regular assignment a[0] = 2;
disables any subsequent nonatomic assignments, and hence all transaction updates
are reverted.

To introduce this additional check in the logic, we employ one more implicit
field for array objects, <transactionUpdated>, that maintains information about
atomic updates. Set to true, it indicates that the array was already updated with a
regular assignment, false indicates no such updates and allows for nonatomic updates
in the same transaction still to be effective. The new assignment rule for arrays needs
to be altered to handle all these conditions and also to record the changes to the
<transactionUpdated> field itself. Without quoting the complete assignment rule
again, the complete state updates to be introduced for an assignment a[i] = se is
the following:

{heap := store(heap,a, i,se)}
{savedHeap :=

if selectint(heap,a,<transient>) .
= 0 then

store(savedHeap,a,<transactionUpdated>,TRUE)
else

if selectint(savedHeap,a,<transactionUpdated>) .
= FALSE then

store(savedHeap,a, i,se)
else savedHeap}

The updates to the <transactionUpdated> field are purposely stored on the backup
heap savedHeap to ease the resetting of this field with each new transaction. On
transaction abort, the heap reverting update filters out any updates to this field on the
backup heap using the anonymization function (see Section 3.3.1) of the logic:

{heap := anon(savedHeap,allObjects(<transactionUpdated>),heap)}

This expresses the operation of copying the contents of heap savedHeap to heap,
but retaining the value of the <transactionUpdated> field in all objects in heap.
Thus all manipulations of <transactionUpdated> in proofs are local to a single
transaction.

10.4 Taclets for the New Rules

The implementation of the new logic rules to handle Java Card transactions that we
have just presented is almost trivial. Only a handful of new taclets (see Chapter 4)
have to be added to the KeY rule base, most of them very simple. Only the rule
for assigning array elements within transactions is considerably more complicated
because of the cascade update that needs to be introduced. Yet it only involves
changing one kind of rule for array assignments. The only nontaclet extensions, i.e.
internal to KeY, are:

10.4. Taclets for the New Rules 365

• the introduction of the additional modalities 〈[TR·]〉 in the KeY data structures.
With the help of schematic modal operators these new modalities are easily
added to the existing rules for Java constructs that are not affected by transaction
semantics,

• the addition of the built-in Java statements for transaction boundaries #beginTr,
#commitTr, and #abortTr to the Java syntax. In the implementation they re-
ceived fully descriptive names;

• the addition of two new implicit fields to objects, <transient> and <transac-
tionUpdated>.

Below we give the essential taclets that implement the new rules.
The two additional modalities 〈TR·〉 and [TR·] are denoted with

\diamond_transaction{ ... }\endmodality
and
\box_transaction{ ... }\endmodality
in the taclet language, respectively. The existing rules for all Java constructs are
extended to handle these new modalities by including them in the schematic modal
operator #allmodal:
\modalOperator { diamond, box,

diamond_transaction, box_transaction } #allmodal;
Then, the rules for entering and exiting the transactions for the diamond operator

are given with the following three taclets:

KeY
beginJavaCardTransactionDiamond {

\find (==> \<{.. #beginJavaCardTransaction; ...}\> post)
\replacewith(==> {savedHeap := heap}

\diamond_transaction{.. ...}\endmodality post)
\heuristics(simplify_prog)
\displayname "beginJavaCardTransaction"

};

commitJavaCardTransactionDiamond {
\find (==> \diamond_transaction{..

#commitJavaCardTransaction;
...}\endmodality post)

\replacewith(==> \<{.. ...}\> post)
\heuristics(simplify_prog)
\displayname "commitJavaCardTransaction"

};

abortJavaCardTransactionDiamond {
\find (==> \diamond_transaction{..

#abortJavaCardTransaction;
...}\endmodality post)

366 10 Verifying Java Card Programs

\replacewith(==> {heap := anon(savedHeap,
allObjects(java.lang.Object::<transactionUpdated>),
heap)} \<{.. ...}\> post)

\heuristics(simplify_prog)
\displayname "abortJavaCardTransaction"

};

KeY

The rule for the abort also includes the heap update necessary to reset all transaction-
updated flags for arrays as described at the end of Section 10.3.5.

Then, the rule for new instance allocations of arrays (see Section 3.6.6.3) needs
to be amended to include the initialization of the new implicit fields for transaction
handling:

KeY
allocateInstanceWithLength {

\find (==> \modality{#allmodal}{.#pm@#t2()..
#lhs = #t.#allocate(#len)@#t;

...}\endmodality post)
\replacewith (==> { heap :=

store(store(create(heap, #lhs),
#lhs, java.lang.Object::<transient>, 0),
#lhs, java.lang.Object::<transactionUpdated>, FALSE) }

\modality{#allmodal}{.. ...}\endmodality post)
. . .

};

KeY

Finally, the rule for assigning array elements is now the following. We skip the
null object reference, array index bounds, and array store validity checks for clarity,
as they are exactly the same as described in Section 3.6.2:

KeY
assignment_to_array_component_transaction {

\schemaVar \modalOperator { diamond_transaction,
box_transaction } #transaction;

\find (\modality{#transaction}{..
#v[#se] = #se0;

...}\endmodality post)
\sameUpdateLevel
"Normal␣Execution␣(#v␣!=␣null)": \replacewith(

{heap := store(heap, #v, arr(#se), #se0)}
{savedHeap :=

\if(int::select(heap, #v,
java.lang.Object::<transient>) = 0)

\then(store(savedHeap, #v,

10.5. Modular Reasoning with Multiple Heaps 367

java.lang.Object::<transactionUpdated>, TRUE))
\else(

\if(boolean::select(savedHeap, #v,
java.lang.Object::<transactionUpdated>) = FALSE)

\then(store(savedHeap, #v, arr(#se), #se0))
\else(savedHeap)) }

\modality{#transaction}{.. ...}\endmodality post)
\add (!(#v=null) & lt(#se, length(#v)) &

geq(#se,0) & arrayStoreValid(#v, #se0) ==>);
. . .Other proof branches to check for exceptions . . .
\heuristics(simplify_prog, simplify_prog_subset)

};

KeY

10.5 Modular Reasoning with Multiple Heaps

The taclets that we have just discussed cover the implementation of the new logic
rules to handle Java Card transactions. This makes the core JavaDL calculus and the
associated proving engine of KeY aware of transactions. It does not yet, however,
handle modular reasoning with contracts in the presence of multiple, simultaneously
evolving heap data structures. This issue of modularity for multiple heaps is entirely
orthogonal to the transaction semantics. That is, other possible extensions to KeY that
involve the use of more than one heap face the same problem. Such additional heaps
can be used to model some concrete execution artifact, like the transaction handling
described here or different physical memories present on some device. Alternatively,
additional heaps can be used to introduce additional abstractions to the logic, for
example, permission accounting for thread-local concurrent reasoning. We discuss
these possible scenarios in a bit more detail in the concluding Section 10.7.

From the point of view of KeY, heap variables are simply program variables,
only that they require special handing when proof obligations are generated and
when contract or loop rules are applied (see Chapter 9). In particular, location sets
declared in assignable clauses are used to properly handle framing. In the presence
of multiple, simultaneously changing heaps, the framing conditions, and hence the
assignable clauses, have to take into account the additional heaps.

To lift this up to the specification layer of JML, we now allow the assignable
clauses to take an additional (and optional) argument that declares the heap that the
subsequently listed locations refer to. When no heap argument is given, the default
memory heap represented with the heap variable, is assumed. In this extension
of JML, the heap argument is given in angle brackets following immediately the
assignable keyword. Hence, the following are all valid assignable clauses:
assignable o.f; refers to the default heap
assignable<heap> o.f; the same, but explicit

368 10 Verifying Java Card Programs

assignable<savedHeap> o.f, o.g; locations that can change
on the backup heap

assignable<heap><savedHeap> o.f; location that can change
on both heaps simultaneously

For such specifications (for methods and/or loops), KeY can now generate and use
appropriate framing conditions over all defined heaps. On the implementation side
KeY can handle any arbitrary, but fixed, number of additional heaps. We give more
realistic examples of how this is used in practice in the next section.

The idea of making heaps explicit parameters in assignable clauses is further
extended to other specification constructs to allow even more flexible reasoning.
In principle, not all of the additional heaps are active in all verification and/or
proof contexts. In particular, savedHeap is only relevant in proof contexts where
there is an active Java Card transaction, i.e., only within the scope of transaction
modalities 〈[TR·]〉. In other contexts, all specification expressions relating to the
savedHeap can be just ignored. Since we allow all of the specification elements, in
particular requires and ensures clauses, to declare the heaps they relate to, KeY
can selectively create method contracts that filter out the correspondingly unused
heaps for the different verification and proof contexts. Conversely, the presence of
additional heaps in the specification give the KeY system an indication whether
the given contract is applicable in a given context. In particular, contracts that are
not listing assignable locations for the savedHeap are not considered applicable in
transaction contexts.

Apart from assignable and other specification clauses, the user has to be able to
refer to locations on different heaps in regular JML expressions. To this end, the
operator \backup can be applied to any field or array element access expression to
indicate that the backup heap savedHeap should be accessed rather than the regular
one, exactly in the same way as the \old operator accesses the heap prior to the
method call. Other additional heaps would introduce their own corresponding access
keywords, for example, \perm to specify concurrent access permissions stored a
separate heap (again, see the end of the concluding Section 10.7).

The final extension for JML to fully access the Java Card transaction extensions
is the ability to access the implicit fields <transient> and <transactionUp-
dated> from specifications. Both can be simply accessed directly as field references.
Additionally, for any object o, the former can be access with a proper Java Card API
call, JCSystem.isTransient(o), the latter can be accessed with the JML keyword
\transactionUpdated(o).

10.6 Java Card Verification Samples

This section is devoted to a handful of examples that make use of the presented
formalization of Java Card transactions. We start with the JML specified version of
the balance updating method that we used as a running example in Section 10.3, then
we discuss how the actual reference implementation of the native transaction-sensitive

10.6. Java Card Verification Samples 369

array manipulation routines of the Java Card API can be specified and verified with
KeY. Finally, we show a short example of Java Card code implementing a pin counter
update routine using one of these API methods. It illustrates the verifiability of the
effects of nonatomic updates to ensure the routine’s security. All of the presented
examples are verified with KeY fully automatically, hence we discuss mostly the
specifications.

10.6.1 Conditional Balance Updating

Below we list the updateBalance example we used earlier in Section 10.3 with
full JML specifications. The method has two specification cases to reflect the two
possible outcomes of the method: either both object fields are updated or none of
them is. Additionally, we specify that both fields should never be negative:

Java + JML
public class PurseApplet {

short balance = 0; //@ invariant balance >= 0;
short operationCount = 0; //@ invariant operationCount >= 0;

/*@ public normal_behavior
requires JCSystem.getTransactionDepth() == 0;
requires balance + change >= 0;
ensures balance == \old(balance) + change;
ensures operationCount == \old(operationCount) + 1;
ensures \result == \old(balance) + change;

also
public normal_behavior

requires JCSystem.getTransactionDepth() == 0;
requires balance + change < 0;
ensures balance == \old(balance);
ensures operationCount == \old(operationCount);
ensures \result == \old(balance) + change;

@*/
public short updateBalance(short change) {

short newBalance = 0;
JCSystem.beginTransaction();
this.operationCount++;
newBalance = (short)(this.balance + change);
if(newBalance < 0) {
JCSystem.abortTransaction();
return newBalance;

}

370 10 Verifying Java Card Programs

this.balance = newBalance;
JCSystem.commitTransaction();
return newBalance;

}
...

}

Java + JML

The newly calculated balance is returned by the method, regardless of the actual
outcome of the balance updating, i.e., the method also returns a possibly negative
would-be balance. This is to illustrate that updates to local variables are not at
all affected by transactions. In both specification cases, the method’s result is the
same, i.e., equal to the sum of the initial balance and the requested change. Also,
both specification cases require that there is not any on-going transaction when this
method is called. That is, the transaction depth recorded by the API should be 0. The
remaining parts of the two specification cases spell out the property that the two
object fields are updated simultaneously. If the new requested balance is not negative,
the operation count is increased and the new balance is stored. Otherwise, both fields
remain unchanged.

10.6.2 Reference Implementation of a Library Method

As mentioned in Section 10.2, the Java Card API is a substantially cut-down version
of the regular Java API. The classic edition Java Card API consists of less than 100
classes, moreover, a lot of the methods in the API are not implemented in Java Card
themselves, but as native code. This is because most of the API is an interface to
the smart card hardware: an Application Protocol Data Unit (APDU) buffer that is
used for communication with the host, the transaction facilities that we have been
discussing here, or the cryptographic facilities usually supported by a dedicated CPU.

One particular part of this API is responsible for efficient handling of bulk memory
updates, i.e., complete array updating or copying. These native array methods not
only improve the performance, but also offer transaction specific handling of the
arrays. That is, one class of array methods ensure atomic update of the given array
(as if the whole operation were included in a transaction block), the second class
allow for nonatomic updates of array elements. Such nonatomic updates, as discussed
in Section 10.3.5, allow by-passing an on-going transaction to effectively enforce
unconditional update of persistent memory that would otherwise be reverted by a
transaction abort.

From the point of view of the reference implementation, these nonatomic methods
are the most interesting and the most challenging. Here we discuss one that fills an
array with data, the arrayFillNonAtomic method from the Util class with the
following signature:

10.6. Java Card Verification Samples 371

public static final short arrayFillNonAtomic(
byte[] bArray, short bOffset, short length, byte value)

throws NullPointerException, ArrayIndexOutOfBoundsException;
In regular execution contexts, i.e., outside of any transaction, this method does
what one would expect: It fills the range of array elements from bOffset to
bOffset+length-1 incl. with the value byte. The return value is the first off-
set index right after the modified elements. The specification is straightforward with
JML, our specification also requires conditions for normal termination:

Java + JML
public normal_behavior

requires JCSystem.getTransactionDepth() == 0;
requires bArray != null && length >= 0;
requires bOffset >= 0 && bOffset+length <= bArray.length;
ensures (\forall short i; i >= 0 && i < length;

bArray[bOffset+i] == value);
ensures \result == bOffset + length;
assignable bArray[bOffset..bOffset+length-1];

Java + JML

The first precondition limits the use of the method to nontransaction contexts only.
The code to achieve this behavior is also straightforward, this is done with a simple
loop specified with JML:

Java + JML
/*@ loop_invariant i >= 0 && i <= length &&

(\forall short j; j>=0 && j<length;
bArray[bOffset + j] == (j < i ?

value : \old(bArray[bOffset + j]))
);

decreases length - i;
assignable bArray[bOffset..bOffset+length-1]; @*/

for(short i=0; i<length; i++) {
bArray[bOffset + i] = value;

}
return (short)(bOffset + length);

Java + JML

The verification of this poses KeY no problems whatsoever.
Extending both the specification and the reference implementation to the trans-

actional behavior makes things a little bit more complicated. First of, our top-level
specification needs to state what the effects on the contents of the savedHeap are go-
ing to be. This is specified with the following and reflects the semantics of nonatomic
updates described in Section 10.3.5 above.

JML
public normal_behavior

372 10 Verifying Java Card Programs

requires JCSystem.getTransactionDepth() == 1;
requires !\transactionUpdated(bArray);
requires JCSystem.isTransient(bArray) ==

JCSystem.NOT_A_TRANSIENT_OBJECT;
requires bArray != null && length >= 0;
requires bOffset >= 0 && bOffset+length <= bArray.length;
ensures (\forall short i; i >= 0 && i < length;

bArray[bOffset+i] == value);
ensures \result == bOffset + length;
ensures (\forall short i; i>=0 && i<length;

\backup(bArray[bOffset + i]) == value);
assignable<heap><savedHeap>

bArray[bOffset..bOffset+length-1];

JML

The presence of the savedHeap reference in the assignable clause makes this spec-
ification applicable to transaction contexts, the first precondition narrows this to
transaction contexts only. Then, we limit ourselves only to persistent arrays and
require that the array has not been updated with regular assignments in the same
transaction, i.e., to execution contexts where the update caused by the method is
indeed nonatomic. The remaining preconditions are as before to ensure nonexcep-
tional behavior of the method. The first two postconditions are the same as before
and specify the effects of the method on the state of the regular heap. The third
postcondition states that the contents of bArray is also changed on the backup heap.
Effectively this means that the method bypasses the transaction and updates the array
unconditionally.

The implementation of the method and the specification of the loop also need
to be changed accordingly. First, to emulate the nonatomic update in the code we
need to temporarily change the persistency type of the array, following the schema
described in Section 10.3.5 above. This should only be done in case the array is not
already transient. Thus, we surround the loop with the following:

Java Card
final boolean changeTransient = (JCSystem.isTransient(bArray)

== JCSystem.NOT_A_TRANSIENT_OBJECT);
if(changeTransient) {

JCSystem.nativeKeYSetTransient(bArray,
JCSystem.CLEAR_ON_RESET);

}

// The update loop...

if(changeTransient) {
JCSystem.nativeKeYSetTransient(bArray,

JCSystem.NOT_A_TRANSIENT_OBJECT);

10.6. Java Card Verification Samples 373

}

Java Card

The method nativeKeYSetTransient is a built-in KeY method that can change the
<transient> field of objects, something that is not normally possible with regular
Java syntax.2

Finally, we add specifications to our update loop to also account for changes
on the savedHeap. The loop invariant quoted before stays the same, as does the
decreases clause. We add a new loop invariant that states the effects of the loop on
the backup heap and adds this heap to the assignable clause:

JML
// Previous loop invariant and decreases clause
loop_invariant (\forall short j; j >= 0 && j < length;

\backup(bArray[bOffset + j]) == value);
assignable<heap><savedHeap>

bArray[bOffset..bOffset+length-1];

JML

KeY also has no problems verifying this modified method automatically. The
final remark for this method is that it is clear that we introduced redundancy in the
specification. The first, nontransactional specification is practically a subset of the
second specification. This was done purposely for the clarity of the presentation.
However, it is possible to combine the two specifications (both the method contract
and the loop specification) into one and make KeY construct a contract that is
applicable in both nontransactional and transactional contexts. This is done by also
annotating the requires and ensures clauses with the corresponding heap variable.
Then, in a nontransaction context only the clauses not annotated with savedHeap are
used, in transaction contexts both clauses are used. In particular, the postconditions
that specify quantifier expressing the new state of the array would now be specified
in one contract with:

JML
ensures (\forall short i; i >= 0 && i < length;

bArray[bOffset+i] == value);
ensures<savedHeap> (\forall short i; i >= 0 && i < length;

\backup(bArray[bOffset+i]) == value);

JML

2 One can consider the <transient> field purposely hidden, so that only the API is allowed to
make changes of this field that are legal in terms of Java Card specification.

374 10 Verifying Java Card Programs

10.6.3 Transaction Resistant PIN Try Counter

We can now use the method arrayFillNonAtomic to implement a transaction-safe
PIN (Personal Identification Number) try counter [Hubbers et al., 2006]. A try counter
is a simple one variable counter that gets decreased with every authentication event,
i.e., entering the PIN. Only when the entered PIN is correct, the try counter gets reset
to its predefined maximum value (typically 3). Once the counter reaches zero, no
further authentication attempts should be possible, and resetting the PIN back to a
usable state requires some sort of a administrative procedure, for example, entering a
PUK (Personal Unlocking Key) code or simply getting a new card.

This describes the security of the PIN try counter on the functional level, and up
to this point such a try counter is trivial to implement. On top of this functionality,
one needs to ensure that the try counter is resistant to all sorts of attacks. Using
the transaction mechanism, one of the possible attacks on a PIN is the following.
The try counter of the PIN is stored in the persistent memory of the card so that
the PIN state is not reset during every new card session. Then, one could use an
aborting transaction to revert the try counter. The PIN checking routine is enclosed
in a transaction. The attacker guesses a PIN code and in case the PIN is not correct
the transaction is aborted, which in effect reverts all the updates to the persistent
memory, and that would include the try counter. Effectively this gives the attacker an
infinite number of possible guesses to break the PIN code. And, given the usually
short PIN numbers (4 or 6 decimal digits), this breaks the security of the card wide
open. Such an attack is realistically possible if an attacker is able to upload such an
exploiting applet that would attempt to break the global PIN of the card, normally
accessible through one of the security APIs of Java Card.

To tackle this problem, the try counter needs to be updated in a nonatomic fashion,
so that no transaction aborts would ever affect its value. Although the Java Card
API provides nonatomic updates for arrays only, it is still possible to implement a
try counter using these methods. Instead of storing the counter in a single variable
(object field), we store the counter in a one element array. Then we simply always
use a nonatomic method from the API to update the try counter.3 For this we provide
the following Java Card class:

Java Card
final public class TryCounter {

private byte[] counter = new byte[1];
private final byte max;

public TryCounter(byte max) {
this.max = max;
reset();

}

3 To prevent denial-of-service attacks, also resetting the counter to its maximum value should be
done in a nonatomic ways. Otherwise, a correct PIN may not be able to reset the counter properly
when any possible on-going transaction gets aborted or interrupted.

10.6. Java Card Verification Samples 375

public void reset() {
Util.arrayFillNonAtomic(counter, (short)0, (short)1, max);

}

public boolean decrease() {
if(counter[0] == (byte)0) return false;
byte nv = (byte)(counter[0] - 1);
Util.arrayFillNonAtomic(counter, (short)0, (short)1, nv);
return true;

}

public byte get() {
return counter[0];

}
}

Java Card

For verification we shall also provide a handful of JML annotations. We concentrate
here on the decrease method. The invariants that we need are the following:

JML
invariant counter != null && counter.length == 1 &&
JCSystem.isTransient(counter) ==
JCSystem.NOT_A_TRANSIENT_OBJECT;

invariant !\transactionUpdated(counter) && counter[0] >= 0;
JML

Then the contract for decrease in most part reflects the contract for arrayFill-
NonAtomic as decrease essentially just calls arrayFillNonAtomic:

JML
public normal_behavior

ensures \result <==> (\old(counter[0]) != 0);
ensures counter[0] == \old(counter[0]) - (\result ? 1 : 0);
ensures<savedHeap> \backup(counter[0]) ==

\old(counter[0]) - (\result ? 1 : 0);
assignable<heap><savedHeap> counter[0];

JML

We are now ready to specify and verify our security property, i.e., that the counter
is decreased regardless of any on-going (and aborting) transaction. We do this by
writing an auxiliary test method with the following specification:

Java + JML
/*@ normal_behavior

requires \invariant_for(c) && c.get() > 0;

376 10 Verifying Java Card Programs

ensures \invariant_for(c) && c.get() == \old(c.get()) - 1;
@*/

void testCounter(TryCounter c, boolean abort) {
JCSystem.beginTransaction();
c.decrease();
if(abort) {
JCSystem.abortTransaction();

} else {
JCSystem.commitTransaction();

}
}

Java + JML

The unspecified Boolean parameter abort makes KeY consider both transaction
cases and effectively verifies that the counter is always decreased. Similar specifi-
cations and additions to the TryCounter’s invariant are required to also verify the
reset() method’s resistance to transactions, we leave this is as an exercise for the
reader.

10.7 Summary and Discussion

This chapter discussed a complete solution to reason about Java Card transactions
in JavaDL using KeY. The base of the solution is the manipulation of two memory
heaps to model the effects of selective transaction roll-backs. This formalization is
fully implemented in KeY, and we presented complete relevant verification examples
of realistic Java Card programs.

In its previous instance [Beckert et al., 2007], the KeY system was the first verifica-
tion system to fully handle Java Card platform intricacies. The current formalization
presented in this chapter improves considerably over the previous one discussed in
detail in [Beckert and Mostowski, 2003] and [Mostowski, 2006], while considerably
sized Java Card verification case studies done with the previous version of KeY are
discussed in [Mostowski, 2005] and [Mostowski, 2007]. In the new formalization,
there is no need to introduce new semantics for state updates of KeY and the number
of additional (transaction marked) modalities is smaller. Also the number of logic
rules that extend the basic KeY logic is very low compared to our previous work. As
for efficiency, there is not much to discuss—all the examples from this chapter verify
fully automatically with KeY in a matter of seconds. The simplicity of our current
solution also underlines the good choice of modeling the memory with explicit heap
variables—explicit manipulation of these variables makes our Java Card reasoning
model very compact.

10.7. Summary and Discussion 377

10.7.1 Related Work

We are only aware of one more verification system that formalized Java Card transac-
tions with similar success to KeY, namely the Krakatoa tool [Marché and Rousset,
2006]. There, a complete solution is also provided with corresponding extensions to
JML and implemented in the Why verification platform. When it comes to simplicity
and reusability of their solution, we would place it somewhere in between our old
and our new solution. In particular, the notion of backup heap locations is used there,
however, each single memory location has its own corresponding backup cell on
the same heap as the original memory locations, instead of the whole heap being
copied/mirrored like in our solution. A support for Java Card transactions has been
also reported for the VeriFast platform [Jacobs et al., 2011a,b], however, it is not
clear how and if the semantics of the transactions has been formalized there. Finally,
Java Card transactions have been considered to be formalized in the LOOP tool using
program transformation to explicitly model transaction recovery directly in the Java
code, but the ideas where never implemented in the tool [Hubbers and Poll, 2004].

10.7.2 On-going and Future Research

The use of multiple heaps is a generic feature of our formalization. That is, the same
methodology of simultaneous manipulation of several heaps can be used to model
other specific features of (Java) programs or to add new elements to the verification
model. In particular, in distributed systems one can consider the local and remote
memories as separate heaps. Similarly, multi-level caches can be treated by assigning
separate heap to each cache. Going further, multi-core systems (like GPUs) could be
also modeled using multiple explicit heaps, each heap representing the local memory
of a single core. Finally, real-time Java can be also considered in this context, where
programs access memories with different physical characteristics on one embedded
device.4

10.7.3 Multiple Heaps for Concurrent Reasoning

In the context of the VerCors project5 [Amighi et al., 2012], we concentrate on ex-
tending the KeY logic with permission accounting to enable thread-local verification
of concurrent Java programs. The VerCors project is concerned with the verification
of concurrent data structures, both from the point of view of possible thread interfer-

4 Admittedly, in the last two examples the different memories are likely to be disjoint and not
sharing any heap locations, hence not really utilizing the full power of reasoning with multiple
heaps.
5 www.utwente.nl/vercors/.

http://www.utwente.nl/vercors/

378 10 Verifying Java Card Programs

ence and with respect to meaningful functional properties. Permission accounting
[Boyland, 2003] is a specification oriented methodology for ensuring noninterference
of threads. Single threads verified with respect to permission annotations (specifying
rights to read and/or write memory locations) are guaranteed to be data-race free.
This approach is very popular in verification methods based on Separation Logic or
similar concepts [Reynolds, 2002]. In particular, the VeriFast [Jacobs et al., 2011b]
system implements fractional permission accounting, and the Chalice [Leino et al.,
2009] verifier also uses permission annotations to verify concurrent programs spec-
ified with implicit dynamic frames style specifications [Smans et al., 2012]. The
VerCors project also employs permission accounting in its own version of Separation
Logic [Amighi et al., 2014b] and its corresponding automated tool set [Blom and
Huisman, 2014]. Adapting KeY to incorporate permission accounting is a step in
providing also interactive verification support in the VerCors project [Huisman and
Mostowski, 2015, Mostowski, 2015].

The essential part of adding permission accounting to KeY is the addition of the
parallel permission heap to the logic, simply represented with the permissions
heap variable. This heap stores access permissions to object locations while the
corresponding location values are stored on the regular heap like before.6 Each
access to the regular heap is guarded by checking the corresponding access right
on the permission heap. Locations on the permission heap can also change like on
the regular heap. Namely, permissions to single object locations are mutated when
permission transfer occurs in the verified program, that is, upon new object creation,
forking and joining of threads, and acquiring/releasing synchronization locks (either
through the synchronized blocks or through dedicated Java concurrency API
classes). As with the Java Card transaction treatment the permissions heap is
explicit in the specifications. In particular, locations listed in the assignable clause
for permission indicate possible permission transfer. Conversely, locations not listed
in such an assignable clause are guaranteed to preserve their permissions.

Example 10.3. At the time of the writing of this chapter, the current official version
of KeY already implements permission accounting as an experimental feature. For ex-
ample, the three following (admittedly artificial) methods annotated with permission
specifications are easily verifiable with KeY:

Java + JML
public class MyClass {

int a, b;
Object o;

/*@ public normal_behavior
requires<permissions> \writePerm(\perm(this.o));

6 In fact, this is the same way of treating permissions as in the Chalice verifier [Leino et al., 2009].
In Chalice memory locations are stored on the regular heap denoted with H, while permissions
reside in the permission mask denoted with P. In Chalice, however, these variables are hidden from
the user in the depth of the module translating the specifications and programs to the SMT solver.

10.7. Summary and Discussion 379

ensures<permissions>
\perm(this.o) == \old(\perm(this.o));

ensures \fresh(this.o);
assignable<heap><permissions> this.o;

@*/
public void method1() {
o = new Object();

}

/*@ public normal_behavior
requires<permissions> \writePerm(\perm(this.o));
ensures \fresh(this.o);
assignable<heap> this.o;
assignable<permissions> \nothing;

@*/
public void method2() {
o = new Object();

}

/*@ public normal_behavior
requires<permissions>

\writePerm(\perm(this.a)) && \readPerm(\perm(this.b));
ensures this.a == this.b;
assignable this.a;
assignable<permissions> \nothing; @*/

public MyClass method3() {
this.a = this.b;
MyClass tmp = new MyClass();
tmp.a = 1;
tmp.b = 1;
return tmp;

}
}

Java + JML

The references to the permissions heap in the specification clauses follow the
same pattern as described in Section 10.5 in the context of the savedHeap variable.
The additional JML keywords present in the specifications are \perm, \readPerm,
and \writePerm. The first one is analogous to the \backup operator, and it redirects
object location look-up to the permission heap instead of the regular heap. The other
two keywords are operators to interface JML with the corresponding predicates
in the logic that evaluate the underlying permission expressions to establish the
resulting access rights. Permission expressions as such are an orthogonal issue to
heap handling. Many verification systems use fractional permissions in the range
(0,1] represented with rational numbers [Boyland, 2003], where 1 denotes a full

380 10 Verifying Java Card Programs

access (write) permission, and any positive number strictly less than 1 a partial access
(read) permission. In KeY, we are using fully symbolic permission expressions
that are described in detail in [Huisman and Mostowski, 2015]. However, in the
specification that we present here the permission values are abstracted away to be
simply read or write permissions, and they could be anything, including the classical
fractional permissions.

The first two methods are identical in code, but they differ in the specifications.
For method1() we state that the permission to this.o might be changed by this
method, and in the postcondition we specify what this change is going to be, simply
that the permission stays the same. Thus, the specification can be optimized to what is
stated for method2(), i.e., that the permission to this.o does not change at all. For
method3() we need to require that there is a read permission to this.b and a write
permission to this.a. This ensures that the first assignment in the method is valid.
Then a new object is created and both its fields are assigned with new values. None of
these remaining statements require any additional access permissions. This is because
local variables are always fully accessible, and new objects are always allocated
with full access permission to the current thread. As in the other two methods, apart
from creating new objects, method3() does not do any permission transfers, hence
the assignable \nothing for the permission heap. Note that because of the object
creation, we cannot specify \strictly_nothing for any of these methods as this
would exclude new object creation, which also affects the permission heap.

At the time of writing this, the full support for permission accounting is not
yet finished in the KeY system and should be considered experimental. The crucial
missing element is the verification of specifications themselves. That is, in permission-
based concurrent reasoning, it is only sound to express properties about object
locations to which the specification has at least a read access. That is, similarly to the
accessible condition checking for self-framed footprints described in Section 9.3, all
permission-based specifications need to frame themselves in terms of read access
permissions. The details of the self-framing of permission-based specification in KeY
are described in [Mostowski, 2015], where we also discuss modular specifications
for API synchronization classes using JML model methods (see Section 8.2.3).

