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Abstract This paper presents a general technique for obtaining new results pertain-
ing to the non-finite axiomatizability of behavioral semantics over process algebras
from old ones. The proposed technique is based on a variation on the classic idea
of reduction mappings. In this setting, such reductions are translations between lan-
guages that preserve sound (in)equations and (in)equational proofs over the source
language, and reflect families of (in)equations responsible for the non-finite axioma-
tizability of the target language. The proposed technique is applied to obtain a num-
ber of new non-finite axiomatizability theorems in process algebra via reduction to
Moller’s celebrated non-finite axiomatizability result for CCS. The limitations of
the reduction technique are also studied.

1 Introduction

A classic and fundamental theoretical question in the study of algebras of processes
is whether they afford a finite (in)equational axiomatization. Apart from being of
foundational importance, (finite) axiomatizations of process semantics may form
the basis for implementation verification using tools based on theorem-proving tech-
nology [10]. The first negative results concerning finite axiomatizability of process
algebras go back to the Ph.D. thesis of Faron Moller [20], who showed that strong
bisimilarity is not finitely based over CCS and over ACP without the left-merge
operator. Since then, several other non-finite axiomatizability results have been ob-
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tained for a wide collection of very basic process algebras—see, e.g., [4] for a survey
of such results.

In general, results concerning (non-)finite axiomatizability are very vulnerable to
small changes in, and extensions of, the formalism under study. The addition of a
single operator to a non-finitely axiomatizable formalism may make it finitely ax-
iomatizable (e.g., adding the left-merge operator to the synchronization-free subset
of CCS [9]). Conversely, the addition of a single operator may ruin the finite axiom-
atizability of a calculus (e.g., adding parallel composition to the sequential subset
of CCS [19, 21]). Also, apparently simple changes to the semantics of process cal-
culi, e.g., adding aspects such as timing, may ruin the (non-)finite axiomatizability
results and make their proofs obsolete (e.g., adding timing to synchronization-free
CCS with left merge makes it non-finitely axiomatizable, as shown in [8]). Further-
more, proofs of non-finite axiomatizability results in the concurrency-theory litera-
ture are extremely delicate and error-prone; they are often rather long, and involve
intricate syntactic arguments. Hence, we believe that it would be useful to find some
general theorems that can be used to prove non-finite axiomatizability results. Such
a general theory would allow one to relate non-finite axiomatizability theorems for
different formalisms, and spare researchers (some of) the delicate technical analysis
needed to adapt the proofs of such results. Despite some initial proposals, like the
one in [2], it is fair to say that such a general theory is missing to date.

In this paper, we present a meta-theorem offering a general technique that can
be used to prove non-finite axiomatizability results, and present some of its appli-
cations within concurrency theory. In this meta-theorem, we give sufficient criteria
to obtain new non-finite axiomatizability results from known ones. The proposed
technique is based on a variation on the classic idea of reduction mappings, which
underlies the proofs of many classic undecidability results in computability theory
and of lower bounds in complexity theory—see, e.g., [26] for a textbook presen-
tation. In this setting, reductions are translations between languages that preserve
sound (in)equations and (in)equational proofs over the source language, and reflect
families of (in)equations responsible for the non-finite axiomatizability of the target
language. We show the applicability of our reduction-based technique by obtaining
several, to our knowledge novel, non-finite axiomatizability results for timed and
stochastic process algebras. All these results are proved by showing that the exis-
tence of a finite axiomatization for the seven calculi we consider in this extended
abstract would contradict a result of Moller’s that entails the non-finite axiomatiz-
ability of strong bisimilarity over CCS. We also investigate some of the limitations
of our reduction-based technique. In particular we exhibit a classic variation on CCS
that is not finitely based, but whose non-finite axiomatizability cannot be shown by
reduction to CCS modulo bisimilarity.

The paper is organized as follows. In Section 2, we review some preliminary defi-
nitions from universal algebra. Section 3 presents our reduction-based technique for
proving non-finite axiomatizability results. In Section 4 we apply our approach to
obtain seven new non-finite axiomatizability results. In Section 5, we illustrate the
limitations of our proof methodology by presenting a non-finite axiomatizability re-
sult that cannot be proved using the strategy we employed to obtain the results in
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Section 4. These limitations can provide sources of inspiration for future improve-
ments on our techniques. Finally, Section 6 concludes the paper and presents some
directions for future and ongoing research.

Due to space restrictions, we have omitted most of the proofs of our results in
this extended abstract. The reader is referred to [5] for full details and an in-depth
coverage of the issues discussed in this paper.

2 Preliminaries

We begin by recalling some basic notions from universal algebra that will be used
throughout the paper. We refer the interested reader to, e.g., [14] for more informa-
tion.

A signature Σ is a set of function symbols f ,g, . . . with fixed arities. A function
symbol of arity zero is often called a constant (symbol). Given a signature Σ and a
set of variables V , terms t,u, . . . ∈T (Σ) are constructed inductively (from function
symbols and variables) while respecting the arities of the function symbols. (In what
follows, whenever we write a term f (t1, . . . , tn) we tacitly assume that the arity of f
is n.) Closed terms p,q, . . .∈C (Σ) are terms that do not contain variables. We write
≡ for syntactic equality over terms.

A precongruence - over C (Σ) is a substitutive preorder over C (Σ)—that is, a
preorder over C (Σ) that is preserved by all the function symbols in Σ . A congruence
∼ over C (Σ) is a substitutive equivalence relation. Each precongruence - over
C (Σ) induces a congruence ∼ thus: p∼ q iff p - q - p.

A (closed) substitution maps variables in V to (closed) terms. For every term
t and substitution σ , the term σ(t) is obtained by replacing every occurrence of a
variable x in t by σ(x). Note that σ(t) is closed if σ is a closed substitution. We write
[t1/x1, . . . , tn/xn], where the xi (1≤ i≤ n) are distinct variables, for the substitution
mapping each variable xi to ti, and acting like the identity function on all the other
variables.

Given a relation R over closed terms, for open terms t and u, we define t R u if
σ(t) R σ(u) for each closed substitution σ .

Consider a signature Σ . A set E of equations t = t ′, where t, t ′ ∈T (Σ), is called
an axiomatization (on T (Σ)). We write E ` t = t ′ when t = t ′ is derivable from E
by the following set of inference rules.

(refl)
E ` t = t

(trans)
E ` t0 = t1 E ` t1 = t2

E ` t0 = t2

(cong)
E ` t1 = t ′1 . . . E ` tn = t ′n
E ` f (t1, . . . , tn) = f (t ′1, . . . , t

′
n)

(E)
E ` σ(t) = σ(t ′)

t = t ′ ∈ E

(Deduction rule (cong) is a rule schema with one instance for each function symbol
f in the signature Σ .) For axiomatizations E and E ′, we write E ′ ` E when E ′ `
t = u for each t = u ∈ E. Above, we intentionally did not include the inference
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rule for symmetry, i.e., (symm)
E ` t = t ′

E ` t ′ = t
. Excluding (symm) does not restrict the

applicability of our results by any measure. Any set of equations can be closed
under symmetry by simply adding to it a symmetric copy of each equation, and this
transformation preserves finiteness. (In what follows, we shall tacitly assume that
each equational axiomatization is closed with respect to symmetry.) Furthermore,
the omission of the rule for symmetry allows us to deal with axiomatizations for
precongruences, which are not necessarily symmetric relations. When working with
precongruences, our axiomatizations consist of inequations t ≤ t ′ between terms.

Given a congruence ∼⊆ T (Σ)×T (Σ), an equation t = t ′ is sound modulo ∼
when t ∼ t ′. An axiomatization is sound modulo ∼ if each of its equations is sound
modulo ∼. An axiomatization E is complete modulo ∼ if for each sound equation
t = t ′, it holds that E ` t = t ′. E is ground-complete modulo ∼ if for each closed
sound equation p = q, it holds that E ` p = q. We say that ∼ is finitely based over
T (Σ) if there is a finite, sound and complete axiomatization for T (Σ) modulo ∼.
Similar definitions apply to precongruences and inequational axiomatizations.

3 The Reduction Theorem

Our aim in this section will be to present a general result that will allow us to lift
non-finite axiomatizability results from one process algebra to another. Through-
out this section, we fix two signatures Σo and Σe, a common set of variables V and
two precongruences -o and -e over T (Σo) and T (Σe), respectively. Intuitively,
the signature Σo stands for the collection of operations in an original process lan-
guage for which we already have a non-finite axiomatizability result modulo the
precongruence -o. On the other hand, the signature Σe stands for the collection of
operations in an extended process language for which we intend to prove a non-
finite axiomatizability result modulo the precongruence -e. Since a congruence is a
symmetric precongruence, all the results we present in the remainder of this section
apply equally well when any of -o and -e is a congruence relation.

Consider a mapping ̂ : T (Σe)→ T (Σo). For an axiomatization E over T (Σe),
we define the axiomatization Ê over T (Σo) to be {t̂ ≤ û | t ≤ u ∈ E}.

Definition 1. A function̂ : T (Σe)→T (Σo) is a reduction from T (Σe) to T (Σo),
when for all t,u ∈T (Σe),

1. t -e u⇒ t̂ -o û (that is, ̂ preserves sound inequations), and
2. E ` t ≤ u⇒ Ê ` t̂ ≤ û, for each axiomatization E on T (Σe) (that is, ̂ preserves

provability).

Definition 2. Let E be an axiomatization over T (Σo). A reduction̂ is E-reflecting,
when for each t ≤ u ∈ E, there exists an inequation t ′ ≤ u′ over T (Σe) that is sound
modulo -e such that t̂ ′ ≡ t and û′ ≡ u. The reduction̂ is called ground E-reflecting
if for each closed inequation p≤ q ∈ E, there exists a closed inequation p′ ≤ q′ on
T (Σe) that is sound modulo -e such that p̂′ ≡ p and q̂′ ≡ q.
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We are now ready to state the general tool that we shall use in this paper to lift
non-finite axiomatizability results from T (Σo) modulo -o to T (Σe) modulo -e.

Theorem 1. Assume that there is a set of inequations E on T (Σo) that is sound
modulo -o and that is not provable from any finite sound axiomatization on T (Σo).
If there exists an E-reflecting reduction from T (Σe) to T (Σo), then -e is not finitely
based over T (Σe).

The above theorem gives us a general technique to lift non-finite axiomatizability
results from a language T (Σo) modulo -o to a language T (Σe) modulo -e. Indeed,
suppose that we know that a precongruence -o is not finitely based over T (Σo).
Typically, such a negative result is shown by exhibiting an infinite collection E of
sound inequations that cannot be proved from any finite sound axiomatization over
Σo. (See, e.g., [1, 3, 4, 6, 8, 11, 12, 20, 22] and the references therein.) In the light
of the above theorem, to show that -e is not finitely based over T (Σe) it suffices
only to exhibit an E-reflecting reduction from T (Σe) to T (Σo).

As the examples we present in Section 4 will show, Theorem 1, albeit not tech-
nically complex, is widely applicable. In all our applications of Theorem 1, the
reduction from Σe to Σo is defined inductively on the structure of terms. Since such
“structural” reductions play an important role in the remainder of the paper, we now
proceed to define them precisely and to state a very useful property such reductions
afford.

Definition 3. A mapping ̂ : T (Σe)→T (Σo) is structural if

1. it is the identity on variables, i.e., x̂≡ x for each x ∈V ,
2. it does not introduce new variables, i.e., vars( ̂f (x1, . . . ,xn)) ⊆ {x1, . . . ,xn}, for

each f ∈ Σe and sequence of distinct x1, . . . ,xn ∈V , and
3. it is defined compositionally, i.e., ̂f (t1, . . . , tn) ≡ ̂f (x1, . . . ,xn) [t̂1/x1, . . . , t̂n/xn],

for each f ∈Σe, and sequences of distinct x1, . . . ,xn ∈V and of t1, . . . , tn ∈T (Σe).

Lemma 1. Let̂ : T (Σe)→T (Σo) be a structural mapping. Then σ̂(t)≡ σ̂ (̂t), for
each term t ∈T (Σe) and each substitution σ over Σe.

The following theorem shows that, if the reduction is structural, one can dispense
with proving item 2 of Definition 1. Since each reduction we consider in this paper
is structural, this result eases our applications of Theorem 1 considerably.

Theorem 2. A structural mapping satisfies item 2 of Definition 1.

If the collection of equations E mentioned in the statement of Theorem 1 is closed,
then one can prove impossibility of a finite ground-complete axiomatization of -e
over T (Σe), which is a stronger result than Theorem 1.

Theorem 3. Assume that there is a set of closed equations E that is sound modulo
-o, and that is not provable from any finite axiomatization over T (Σo) that is sound
modulo -o. If there exists a ground E-reflecting reduction from Σe to Σo, then there
exists no sound and ground-complete finite axiomatization for -e over T (Σe).
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For structural reductions whose source is a language over a signature that contains
at least one constant, in order to apply Theorem 3 it suffices to show that the reduc-
tion is E-reflecting by the following theorem. Thus, if the collection of equations
E is closed and the reduction is structural, one can readily obtain impossibility of
a finite ground-complete axiomatization without any further work (by showing that
the premises of Theorem 1 hold).

Theorem 4. An E-reflecting structural reduction ̂ is also ground E-reflecting, pro-
vided that the signature Σe contains at least one constant symbol.

The set of basic equations that we shall use throughout the rest of this paper in
our applications of Theorem 1 is closed and, furthermore, all our reductions are
structural; thus, all the impossibility results we present in the subsequent section
hold for ground-complete as well as complete axiomatizations.

4 Applications

In this section, we take a well-known non-finite axiomatizability result in the set-
ting of process algebra due to Moller [20, 21], and use Theorem 1 to establish other,
to the best of our knowledge novel, non-finite axiomatizability results for several
notions of behavioral (pre)congruences over other process algebras. A brief com-
parison between the full proof of the original result in [20, 21] and those based on
Theorem 1 presented here (and in the full version of this paper [5]) reveals that our
proofs are substantially more concise and simpler than direct proofs. This is despite
the fact that the calculi and notions of (pre)congruence treated henceforth are more
sophisticated than the ones treated in [20, 21].

Consider the subset of CCS [19] with the following syntax.

P ::= 0 | a.P | P+P | P ||P

Note that here a.P stands for one unary operator (action-prefixing with one par-
ticular action a) and not, as it is customary, for a collection of unary operators.
Henceforth, we denote the signature of the above-mentioned calculus by Σo since
that fragment of CCS will be the target language in all the applications of Theorem 1
to follow.

The operational semantics of the calculus above is given by the following SOS
rules.

(a)
a.x a→x

(c0)
x0

a→y

x0 + x1
a→y

(p0)
x0

a→y0

x0 ||x1
a→y0 ||x1

Note that we have omitted the symmetric versions of (c0) and (p0), for brevity;
furthermore, since there is only one action (and no co-action) in our signature, the
standard SOS rule for communication in CCS can be safely omitted.



Lifting Non-Finite Axiomatizability Results to Extensions of Process Algebras 7

Definition 4. A symmetric relation R ⊆ C (Σo)×C (Σo) is a strong bisimulation
when for all (p,q) ∈ R and p′ ∈ C (Σo), if p a→ p′ then there exists a q′ such that
q a→q′ and (p′,q′) ∈ R. Two closed terms p and q are strongly bisimilar (or just
bisimilar), denoted by p↔b q, when there exists a strong bisimulation R such that
(p,q) ∈ R.

Moller showed in [20, 21] that strong bisimilarity affords no finite ground-complete
axiomatization over the above calculus. His negative result was a corollary of the
following stronger theorem.

Theorem 5 (Moller [20, 21]). There is no finite axiomatization over the signature
Σo that is sound modulo strong bisimilarity and proves all the equations in the set
M defined below:

{a1 ||(a1 +a2 + · · ·+an) = a.(a1 +a2 + · · ·+an)+a2 +a3 + · · ·+an+1 | n≥ 1} ,

where ai = a. . . . .a.︸ ︷︷ ︸
i times

0, for each i≥ 1.

In the remainder of this section, we use Theorems 1 and 5 to obtain other non-finite
axiomatizability results, with the aforementioned fragment of CCS as the target lan-
guage for our reductions.

4.1 Discrete-time CCS and Timed Bisimilarity

Timed CCS is a timed extension of CCS proposed by Wang Yi [27]. In [8], we
proved some non-finite axiomatizability results for Timed CCS modulo timed bisim-
ilarity under the assumption that the underlying time domain satisfy a density prop-
erty, and left open whether those results carry over to the discrete-time fragment of
Timed CCS (referred to as DiTCCS in what follows). In this section, we instantiate
our reduction theorem to show that a finite sound and ground-complete axiomatiza-
tion for DiTCCS modulo timed bisimilarity does not exist.

Let A be a set of actions that contains the action a. Following Milner, we write A
for the set of complementary actions {b | b ∈ A}, and assume that α = α for each
α ∈ A∪A. The internal action is denoted by τ /∈ A∪A. The syntax of DiTCCS is
given by the grammar:

P ::= 0 | µ.P | ε(d).P | P+P | P ||P ,

where µ.P is a set of unary operators, one for each µ ∈ A∪A∪{τ}, and ε(d).P
is a set of unary operators, one for each d ∈ N = {1,2, . . .}. In this subsection, we
refer to the signature of DiTCCS as Σe since we use this language as our source
language in applying Theorem 1. The operational semantics of DiTCCS is given by
the following set of SOS rules, where α ∈ A∪A, µ ∈ A∪A∪{τ} and d,e ∈ N.
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(tn)
0

ε(d)→ 0
(a)

µ.x
µ→x

(ta)
α.x

ε(d)→ α.x

(td0)
ε(d).x

ε(d)→ x
(td1)

ε(d + e).x
ε(d)→ ε(e).x

(td2)
x

ε(e)→ y

ε(d).x
ε(d+e)→ y

(c0)
x0

µ→y

x0 + x1
µ→y

(tc)
x0

ε(d)→ y0 x1
ε(d)→ y1

x0 + x1
ε(d)→ y0 + y1

(p0)
x0

µ→y0

x0 ||x1
µ→y0 ||x1

(p2)
x0

α→y0 x1
α→y1

x0 ||x1
τ→y0 ||y1

(tp)
x0

ε(d)→ y0 x1
ε(d)→ y1

x0 ||x1
ε(d)→ y0 ||y1

Sortd(x0)∩Sortd(x1) = /0

These rules define transitions between closed DiTCCS terms. (Again, we have omit-
ted the symmetric versions of (c0) and (p0).) The side condition in rule (tp) uses the
timed sort Sortd(p), where p is a closed DiTCCS term and d ∈ N, which is defined

thus: Sortd(p) = {α ∈ A∪A | p
ε(e)→ p′ α→ for some p′ and e < d} .

The notion of equivalence over DiTCCS we shall consider in what follows is
timed bisimilarity, denoted by ↔t . Timed bisimilarity is just bisimilarity over the
labelled transition system whose states are terms in C (Σe) and whose transitions are
of the form p

χ→ p′, where χ ∈ A∪A∪{τ}∪{ε(d) | d ∈N}. It is well known that↔t
is a congruence over DiTCCS; see, e.g., [27, Theorem 5.1], where the congruence
result is stated for dense-time Timed CCS.

Theorem 6. DiTCCS affords no finite ground-complete axiomatization modulo↔t .

We prove the above result using Theorem 1. To this end, we begin by defining the
following translation ̂ : T (Σe)→T (Σo).

0̂ = 0 x̂ = x µ̂.p =

{
a.p̂ if µ = a,

0 if µ 6= a.

ε̂(d).p = 0 p̂+q = p̂+ q̂ p̂ ||q = p̂ || q̂

Lemma 2. The mapping ̂ defined above is structural.

Consider now the set of Moller’s equations M , which are sound over CCS mod-
ulo bisimilarity. In order to prove that timed bisimilarity is not finitely based over
DiTCCS, by Theorem 1 it suffices only to show the following statements:

1. t↔t u⇒ t̂↔b û, for each t,u ∈T (Σe), and
2. ̂ is M -reflecting.

Note that, for each axiomatization E over the signature of DiTCCS,

E ` t = u⇒ Ê ` t̂ = û

holds by Theorem 2 since ̂ is structural (Lemma 2). Therefore, once we prove the
two statements above, Theorem 6 indeed follows as a corollary of Theorem 1.

Next, we give the proofs of the above two statements.
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1. Proof of t↔t u⇒ t̂↔b û.
In order to prove this statement, it suffices to show that the relation

R = {(σ (̂t),σ(û)) | t↔t u∧σ : V → C (Σo)}

is a bisimulation. To this end, observe, first of all, that R is symmetric. In order
to prove that R satisfies the transfer property in Definition 4, we shall make use
of the following two claims, whose proof will be given later.

a. For all p ∈ C (Σe) and p′ ∈ C (Σo), if p̂ a→ p′ with respect to the operational
semantics of CCS, then there exists some p′′ ∈ C (Σe) such that p a→ p′′, with
respect to the operational semantics of DiTCCS, and p̂′′ ≡ p′.

b. For all p, p′ ∈ C (Σe), if p a→ p′ with respect to the operational semantics of
DiTCCS, then p̂ a→ p̂′ with respect to the operational semantics of CCS.

Assume now that σ (̂t) R σ(û) and σ (̂t) a→ p′0. By Lemmas 1 and 2, σ (̂t)≡ σ̂(t).
It follows from item 1a above that σ(t) a→ p0, for some p0 such that p̂0 ≡ p′0.
Furthermore, as t and u are timed bisimilar, σ(u) a→ p1, for some p1 such that
p0↔t p1. From item 1b and Lemmas 1–2, we have that σ(û) ≡ σ̂(u) a→ p̂1 and,
by the definition of R, we may conclude that p′0 = p̂0 R p̂1, which was to be
shown.
In order to complete the proof of this statement, we are therefore left to show
items 1a and 1b. This we now proceed to do.

a. Proof of item 1a.
We prove this claim by an induction on the structure of p, and only detail the
argument for two representative cases.
• Assume that p≡ µ.p0. Then p must be of the form a.p0 (in order for p̂ to

make an a-transition) and thus, p̂ = a.p̂0
a→ p̂0 = p′. The claim then follows

since a.p0
a→ p0.

• Assume that p≡ p0 + p1. Then p̂≡ p̂0 + p̂1. Suppose, without loss of gen-
erality, that the transition p̂0 + p̂1

a→ p′ is due to an application of rule (c0);
thus, p̂0

a→ p′. It then follows from the induction hypothesis that p0
a→ p′′

for some p′′ such that p̂′′ ≡ p′. By applying deduction rule (c0), we obtain
p≡ p0 + p1

a→ p′′.
b. Proof of item 1b.

By an induction on the depth of the proof for p a→ p′. We distinguish the fol-
lowing cases based on the last deduction rule applied to obtain p a→ p′.

(a) In this case, p is of the form a.p0 and p′ ≡ p0 Thus, using to the same
deduction rule in the semantics of CCS, we have p̂≡ a.p̂0

a→ p̂0.
(c0) Then p ≡ p0 + p1 and p0

a→ p′ by a shorter inference. It follows from the
induction hypothesis that p̂0

a→ p̂′ and, using rule (c0) in the semantics of
CCS, we infer that p̂0 + p̂1

a→ p̂′. Furthermore, by the definition of ,̂ we
have that p̂≡ p̂0 + p̂1.
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The cases for deduction rules (c1), (p0) and (p1) are similar to the case of
(c0).

The proof of the first statement is now complete.

2. Proof of the fact that ̂ is M -reflecting.
We show that all axioms in M are sound modulo↔t . Sincê is the identity over
CCS terms, the statement then follows immediately. To this end, we prove the
following two claims.

a. For each p ∈ C (Σo) and positive integer d, p
ε(d)→ p′ iff p ≡ p′. We prove this

claim by an induction on the structure of p. The cases for 0 and a.p0 follow
from deduction rules (tn) and (ta), respectively. The cases for p0 + p1 and
p0 || p1 follow from the induction hypothesis, and (tc) and (tp), respectively.

b. For each p,q ∈ C (Σo), if p↔b q then p↔t q.
We show that ↔b is a timed bisimulation. To this end, note, first of all, that
the relation↔b is symmetric. Assume now that p a→ p′ and p↔b q. Since↔b
is a bisimulation, it follows that q a→q′ (with respect to the semantics of CCS,
and thus of DiTCCS using the same deduction rules) for some q′ such that
p′↔b q′, and we are done. That delay transitions of p may be matched by q
follows trivially from the previous item.

Since all the provisos of Theorem 1 are met, Theorem 6 follows.

4.2 Temporal CCS

In the paper [23], Moller and Tofts proposed another timed extension of Milner’s
CCS, which they called Temporal Calculus of Communicating Systems (referred to
as TCCSMT in what follows to avoid any confusion with Wang Yi’s Timed CCS),
and studied its semantics theory modulo timed bisimilarity. Our order of business
in this section is to use our reduction-based method to show that timed bisimilarity
affords no finite ground-complete axiomatization over TCCSMT.

For our purposes in this section, TCCSMT is the language generated by the fol-
lowing grammar:

P ::= 0 | µ.P | (d).P | δ .P | P+P | P⊕P | P ||P ,

where µ.P is a set of unary operators, one for each µ ∈ A∪A∪{τ}, and (d).P is
a set of unary operators, one for each positive integer d. The intuition underlying
each of the operators in the signature of TCCSMT is carefully described in [23,
Pages 402–403]. For the sake of clarity, however, we find it useful to mention that:

• process terms of the form 0 or α.p cannot delay, unlike in DiTCCS;
• (d).p behaves exactly like ε(d).p in DiTCCS;
• δ .p describes a process which behaves like p, but is willing to wait any amount

to time before doing so; and
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δ .x
ε(d)→ δ .x (d).x

ε(d)→ x (d + e).x
ε(d)→ (e).x

x
ε(e)→ y

(d).x
ε(d+e)→ y

x0
ε(d)→ y0 x1

ε(d)→ y1

x0⊕ x1
ε(d)→ y0⊕ y1

x0
ε(d)→ y0 maxdelay(x1) < d

x0⊕ x1
ε(d)→ y0

x1
ε(d)→ y1 maxdelay(x0) < d

x0⊕ x1
ε(d)→ y1

x0
ε(d)→ y0 x1

ε(d)→ y1

x0 + x1
ε(d)→ y0 + y1

x0
ε(d)→ y0 x1

ε(d)→ y1

x0 ||x1
ε(d)→ y0 ||y1

Table 1 Rules defining the delay transitions
ε(d)→ over TCCSMT (d ∈ N)

• p⊕q is a “weak choice” between p and q. The choice between p and q is made
upon performance of an action from either of the two processes, or at the occur-
rence of a time delay which can only be performed by one of the processes. By
way of example, as a.p cannot delay, a process of the form a.p⊕ (1).0 will be
transformed into 0 after a delay of one time unit.

In order to define the operational semantics of the weak choice operator, the Plotkin-
style rules for that operator from [23] make use of the function maxdelay(), which
associates a non-negative integer or ω with each closed TCCSMT term. The function
maxdelay() is defined by structural induction on terms as follows:

maxdelay(0) = maxdelay(µ.p) = 0 maxdelay(δ .p) = ω

maxdelay(p+q) = maxdelay(p ||q) = min(maxdelay(p),maxdelay(q))
maxdelay(p⊕q) = max(maxdelay(p),maxdelay(q)) .

The operational semantics of closed TCCSMT terms is given by means of two types
of transitions, namely actions transitions

µ→ with µ ∈ A∪A∪{τ} and delay transi-

tions
ε(d)→ , with d ∈ N. The transition relations

µ→ are defined as for DiTCCS, with
the proviso that

• (d).p has no outgoing action transitions,
• p⊕q has the same outgoing action transitions as p+q, and
• the action transitions of δ .p are exactly those of p—i.e., they are those provable

using the rules
x

µ→y

δ .x
µ→y

(µ ∈ A∪A∪{τ}) .

On the other hand, the transition relations
ε(d)→ are the least relations satisfying the

rules on Table 1. Closed TCCSMT terms are considered modulo timed bisimilarity
↔t (as defined in Section 4.1). Timed bisimilarity is a congruence over TCCSMT as
shown in [23, Proposition 3.4].

Theorem 7. TCCSMT affords no finite ground-complete axiomatization modulo↔t .
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In the remainder of this subsection, we prove the above result using Theorem 1. To
this end, we begin by defining the following translation̂ from open TCCSMT terms
to open CCS terms.

0̂ = 0 x̂ = x δ̂ .p = p̂
â.p = a.p̂ µ̂.p = 0 for µ 6= a (̂d).p = 0

p̂+q = p̂+ q̂ p̂⊕q = p̂+ q̂ p̂ ||q = p̂ || q̂

Remark 1. Note that the mapping obtained from the one defined above by associat-
ing 0 to p̂⊕q would not be a reduction, since it does not preserve valid equations.
For example, the valid equation x⊕x = x would not be preserved by such a mapping.

Lemma 3. The mapping ̂ defined above is structural.

Consider now the set of Moller’s equations M , which are sound over CCS mod-
ulo bisimilarity. In order to prove that timed bisimilarity is not finitely based over
TCCSMT, by Theorem 1 it suffices only to show the following statements:

1. t↔t u implies t̂↔b û, for all TCCSMT terms t,u, and
2. ̂ is M -reflecting.

Note that, for all TCCSMT terms t,u and axiomatization E,

E ` t = u⇒ Ê ` t̂ = û

holds by Theorem 2 since ̂ is structural (Lemma 3). Therefore, once we prove the
two statements above, Theorem 7 indeed follows as a corollary of Theorem 1.

We establish the two statements above in turn. The following lemma will be
useful.

Lemma 4.

1. Assume that p̂ a→r holds with respect to the operational semantics of CCS for
some closed TCCSMT term p and CCS term r. Then p a→ p′ holds with respect to
the operational semantics of TCCSMT for some closed TCCSMT term p′ such that
p̂′ = r.

2. If p a→ p′ holds with respect to the operational semantics of TCCSMT for some
closed TCCSMT terms p, p′ then p̂ a→ p̂′ holds with respect to the operational
semantics of CCS.

We are now ready to show that ̂ preserves sound equations.

Proposition 1. t↔t u implies t̂↔b û, for all TCCSMT terms t,u.

Proof. It suffices to show that the relation

R = {(p̂, q̂) | p↔t q, with p,q closed TCCSMT terms}

is a strong bisimulation. Indeed, assuming that R is a strong bisimulation, we can
show the proposition as follows.
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Suppose that t↔t u holds for some TCCSMT terms t,u. Let σ be a closed CCS
substitution. We shall argue that σ (̂t)↔b σ(û) holds. This follows because

• σ (̂t) = σ̂(t) and σ(û) = σ̂(u) (by Lemma 1, as ̂ is structural and σ = σ̂ ), and
• σ̂(t)↔b σ̂(u) (since σ̂(t) R σ̂(u) and R is a strong bisimulation).

So we are left to show that R is indeed a strong bisimulation. This can be easily
checked using Lemma 4. ut

To complete the proof of Theorem 7, we now show that̂ is M -reflecting. Sincê is
the identity function over CCS terms, it suffices to prove the following result. (Note
that, since CCS is a reduct of the language TCCSMT, it makes sense to consider
CCS terms modulo↔t .)

Proposition 2. The relations↔t and↔b coincide over CCS terms.

Proof. The relation ↔t is included in ↔b over the collection of CCS terms by
Proposition 1. The converse inclusion follows because↔b is a timed bisimulation.

This can be shown using Lemma 4 and observing that p
ε(d)9 holds for each closed

CCS term p and positive integer d. ut

Since all the provisos of Theorem 1 are met by our reduction, Theorem 7 follows.

4.3 Other Calculi, Equivalences and Preorders

There are many other extensions of process algebras in the literature, and each of
these languages comes equipped with notions of behavioral equivalence and/or pre-
order. In this section, we briefly review the results we obtained using our reduction
technique for a few such extensions and refer the reader to the extended version
of this paper [5] for the full treatment of these cases. Here we limit ourselves to
remarking that all the non-finite axiomatizability results covered by the following
theorem are proved using M -reflecting reductions to CCS.

Theorem 8. The following process algebras afford no finite (ground-)complete ax-
iomatization: ATP modulo timed bisimilarity [25]; TACSUT modulo the faster-than
preorder [16]; TACSLT modulo the MT-preorder [17]; TACS modulo urgent timed
bisimilarity [18]; and IMC modulo strong Markovian bisimilarity [15].

5 Limitations of Our Approach

As witnessed by the applications described in the previous section, our reduction-
based method for proving non-finite axiomatizability results, based on Theorem 1,
is widely applicable. Moreover, in all of the applications of Theorem 1 we presented
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in Section 4, we used CCS modulo bisimilarity as our target language for an M -
reflecting reduction. In this section, we give an example of an equational theory
within the realm of classic process algebra, whose non-finite axiomatizability cannot
be shown in that fashion.

The language CCSΩ (a variant of the calculus presented in [7]) is obtained by
adding the constant Ω to the fragment of CCS introduced in Section 4. Intuitively,
Ω stands for a process whose behavior is completely unspecified. The operational
semantics of CCSΩ is given by two ingredients: a→ transitions, which are defined
by the same deduction rules used for CCS (thus, Ω has no outgoing transitions), and
a convergence predicate ↓, which is the least predicate over closed CCSΩ satisfying
the rules given below.

0 ↓ a.p ↓

p ↓ q ↓

p+q ↓

p ↓ q ↓

p ||q ↓

So, for instance a.Ω ↓, but neither Ω ↓ nor a ||Ω ↓ hold.
The following notion of prebisimilarity is a relevant notion of behavioral preorder

in the presence of divergence as adopted in, e.g., [13]. We refer the interested reader
to that paper and the references therein for a wealth of results on the semantic theory
of CCSΩ modulo prebisimilarity.

Definition 5. The relation @∼pre is the largest relation over the closed terms of CCSΩ

satisfying the following clauses, whenever p @∼pre q,

1. for each p′, if p a→ p′ then there exists a q′ such that q a→q′ and p′ @∼pre q′;
2. if p ↓, then

a. q ↓ and
b. for each q′, if q a→q′, then there exists a p′ such that p a→ p′ and p′ @∼pre q′.

The relation @∼pre is a preorder and a precongruence over closed CCSΩ terms. More-
over, it coincides with bisimilarity over CCS terms.

Using an argument based on the soundness of the equations in the set M over
CCSΩ modulo @∼pre , we can show the following theorem.

Theorem 9. CCSΩ affords no finite sound and ground-complete axiomatization
modulo @∼pre .

It is natural to wonder whether the above result can be established, like all those we
presented in Section 4, by using CCS modulo bisimilarity as our target language for
an M -reflecting reduction. The following theorem shows that this is not possible,
and highlights a limitation of our present proof strategy based on reductions to CCS
modulo bisimilarity.

Theorem 10. There is no M -reflecting reduction from CCSΩ modulo @∼pre to CCS
modulo strong bisimilarity.
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6 Conclusions

In this paper, we have proposed a meta-theorem for proving non-finite axiomati-
zability results. This theorem can be used to show such results when there exists
a reduction from the calculus under consideration to a calculus for which non-
finite axiomatizability is known. If the reduction is defined structurally (in the sense
of Definition 3), then one only needs to prove that the reduction preserves sound
(in)equalities and that it reflects a set of “difficult” (in)equations that form the core of
the non-finite axiomatizability result over the target calculus. We have shown seven
new non-finite axiomatizability results in process algebra by applying our meta-
theorem and reducing different calculi (modulo their respective notion of equiva-
lence or preorder) to a subset of CCS. We intend to apply our reduction technique
to obtain several other new non-finite axiomatizability results in process algebra.

The above-mentioned conditions on the reductions can be established following
similar lines for the different calculi and different notions of (pre)congruence stud-
ied in this paper. The resulting proofs are substantially more concise and simpler
than typical proofs of non-finite axiomatizability. We believe that the proofs of the
aforementioned two conditions can be further simplified if one commits to particular
models such as those given by Plotkin-style SOS rules. A promising future research
direction is to study whether one can apply our meta-theorem in conservative and
orthogonal language extensions. Using the SOS meta-theory, one can seek sufficient
syntactic conditions on the reduction function that would automatically provide us
with the properties required by our meta-theorem. Furthermore, in this paper, we
pointed out a limitation of our meta-theorem by presenting a non-finite axiomati-
zability result that cannot be proved using our general strategy of reducing calculi
to CCS. Studying the roots of such limitations may lead to improvements upon the
meta-theorem presented in this paper.
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