Reducing Concretization Effort in FSM-Based
Testing of Software Product Lines

Vanderson Hafemann Fragal', Adenilso Simao!, André Takeshi Endo?, and
Mohammad Reza Mousavi®

! Institute of Math. and Computer Sciences (ICMC), University of Sao Paulo, Brazil
2 Federal Technological University of Parans (UTFPR-CP), Brazil
3 Centre for Research on Embedded Systems (CERES), Halmstad University, Sweden

1 Background

In this section, we present basic definitions regarding finite state machines, test
properties, and software product line testing. Section 2 presents our detailed
selection algorithm.

1.1 Finite State Machine

A finite-state machine (FSM) in our context, is a deterministic Mealy machine,
which can be defined as follows.

Definition 1. An FSM M is a 7-tuple (S, s, I,0,D,8,\), where S is a finite
set of states with the initial state so, I is a finite set of inputs, O is a finite set of
outputs, D C S x I is a specification domain, § : D — S is a transition function,
and A : D — O is an output function.

If D=Sx1I,then M is a complete FSM; otherwise, it is a partial FSM. As M
is deterministic, a tuple (s,2) € D determines uniquely a defined transition
of M. A transition from state s to s’ with input x and output o is represented by
quadruple (s,z,0,s") € D — O x S, or alternatively by s % s'.

A sequence a = x1,...,xp,a € I* is a defined input sequence at state
s € S, if there exist states sy, ..., sg+1 € S, where s = s; such that (s;,x;) € D
and §(s;, ;) = si41, for all 1 <4 < k. Notation §2(s) is used to denote all defined
input sequences for state s € S and {2y denotes £2(sg). We extend the transition
and output functions from input symbols to defined input sequences, including
the empty sequence ¢, as usual, assuming 6(s,e) = s and A(s,e) =€ for s € S.

Given sequences «, 3,7 € I*, a sequence « is prefix of a sequence /3, denoted
by a < 3, if 8 = ary, for some sequence v, and 7y is a suffix of 5. A sequence «
is proper prefix of 5, < 3, if 8 = aw for some w # . We denote by pref(3)
the set of prefixes of 3, i.e. pref(8) = {aJa < B}. For a set of sequences A,
pref(A) is the union of pref(B) for all § € A. If A = pref(A), then we say that
A is prefix-closed. Moreover, we say that a sequence a € A is maximal in
A if there is no sequence § € A such that « is a proper prefix of 8. Given a

sequence a and k > 0, we define o recursively as follows: a° = ¢; o = aa*~1,

if K > 0. The common extensions of two sequences are the sequences obtained
by appending a common sequence to them.

An FSM M is said to be initially connected, if for each state s € S,
there exists an input sequence a € {2p7, such that d(sp,a) = s, called a
transfer sequence for state s. Given a set C C §2(s) N §2(s’), states s and
s’ are C-equivalent if A(s,y) = A(s',7) for all v € C. Otherwise, if there exists
a v € C such that A(s,7v) # A(s’,7), then s and s’ are C-distinguishable.
An FSM M is minimal (or reduced), if every pair of states s,s’ € S are C-
distinguishable. In this paper, only minimal and initially connected machines are
considered, since it is a pre-requisite for the P test case generation method[4]
used to execute our strategy.

A set C C {2y is a state cover for an FSM M if, for each state s € S,
there exists a € C such that d(sg,) = s. The set C' C {2y covers a transition
(s,z) if there exists o € C such that §(sg,) = s and ax € C. The set C is a
transition cover (for M) if it covers every defined transition of M. A set of
sequences is initialized if it contains the empty sequence.

1.2 Test Properties

In this paper, we use the full fault coverage criteria for FSMs from the P
method[4]. We use the notion of test suite completeness with respect to a given
fault domain and sufficiency conditions based on convergence and divergence
properties introduced in [4].

Throughout this paper, we assume that M = (S, s0,1,0,D,d,\) and N =
(Q,q0,1,0', D', A, A) are a specification FSM and an implementation FSM,
respectively. Moreover, n is the number of states of M. We denote by & the
set of all deterministic FSMs with the same input alphabet as M for which
all sequences in 2, are defined, i.e. for each N € < it holds that 2, C 2x.
The set & is called a fault domain for M and <, is the set of FSMs with n
states. Faults can be detected by tests, which are input sequences defined in the
specification FSM M.

Definition 2 ([4]). A defined input sequence of FSM M s called a test case
(or simply a test) of M. A test suite of M is a finite prefiz-closed set of tests
of M.

The size of a test a € I* denoted by |a] is calculated by the number of inputs
that it contains, i.e., |a| = k,a = (21...zx). Similarly, |T| is the size of a test suite
T calculated by the sum of all tests plus the reset operation for each maximal
test, i.e., [T| =Y (la| +1),a € T, fgcr e B=ay Ay #e.

The distinguishability of FSMs is defined as the corresponding relation of their
initial states, thus, tests are assumed to be applied in the initial state. Given a test
suite 7', FSMs are T-equivalent if their initial states are T-equivalent. Similarly,
FSMs are T-distinguishable if their initial states are T-distinguishable.

Given two tests «, 8 € 2) they converge if when applied to the initial
state they take the FSM into the same state, and they diverge if they take the
FSM from the initial state to different states. Given a non-empty set of FSMs

Y C & and two tests «, 8 € (257, we say that a and are Y-convergent if
they converge in each FSM of the set Y. Similarly, we say that o and g are
Y -divergent if they diverge in each FSM of X.

Two tests o and [in a given test suite T' are T-separated if there exist
common extensions a7,y € T, such that A(d(so,),y) # A(d(s0,0),7). T-
separated tests are divergent in all FSMs that are T-equivalent to M. Given
a test suite T, let S(7T') be the set of all N € S, such that N and M are
T-equivalent.

Lemma 1 ([4]). Given a test suite T of an FSM M, T-separated tests are
S(T)-divergent.

We refer to [4] for detailed proofs of the lemmas and theorems presented in
this section.

Divergence of two tests can be identified by different outputs produced by the
tests, while the convergence of two tests cannot be directly ascertained. However,
it can be shown that if a maximal number of states of FSMs in the fault domain
is known, and the two tests are I(7T')-divergent with tests reaching all but one
state of the FSM M, these two tests must also converge in the same state in any
FSM in the fault domain that is T-equivalent to M. Given a test suite 7', let
Sn(T) = 8, N(T), ie. the set of FSMs in which are T-equivalent to M and
have at most n states.

Lemma 2 ([4]). Given a test suite T and oo € T', let K be an 3, (T)-divergent
set with n tests and 8 € K be a test M -convergent with «. If o is S, (T')-divergent
with each test in K\{B}, then a and 8 are &, (T')-convergent.

The condition for n-completeness of a test suite T uses the notion of
convergence-preserving set, for which the M-convergence implies the S, (T)-
convergence.

Definition 3 ([4]). Given a test suite T of an FSM M, a set of tests is
S (T)-convergence-preserving (or, simply, convergence-preserving) if all
its M -convergent tests are S, (T')-convergent.

Any M-divergent set is by definition convergence-preserving, and M € &y,
then S, (T) is by definition not empty. Next, we define the n-complete condition
for the full fault coverage criteria.

Theorem 1 ([4]). Let T be a test suite for an FSM M with n states. We have
that T is an n-complete test suite for M if T contains an 3, (T')-convergence-
preserving initialized transition cover set for M.

When an n-complete test suite T has guaranteed fault coverage (or full
fault coverage) for an FSM M, then, by executing T' we are capable of detecting
any fault in all FSM implementations N € S, (T).

There exist several methods to generate n-complete test suites [1,3,4]. For
example, the P method [4] uses two input parameters: a deterministic, initially
connected, and minimal FSM M; and an initial test suite 7. The initial set

T can be empty, and new tests are added/incremented (if necessary) until an
n-complete test suite for M is produced. Therefore, the P method checks if all
implementations IV € &, can be distinguished from M using T, and decides if
more sequences need to be added to T. Experimental evaluation indicates that
the P method often results in smaller n-complete test suites compared with other
methods [2].

2 Selection Algorithm

In this section, we present an overview of the test sets used in the reuse strategy
and our selection algorithm with extra details about its steps.

2.1 Overview

Given an FSM M, an n-complete test suite 7" and n states, the algorithm select
tests that satisfies the condition of Definition 1 resulting an n-complete subset
S CT. Tests of T are analyzed and only a specific subset of tests is selected to
cover each transition for the convergence-preserving property, and thus removing
redundancy. Figure 1 (b) shows the abstract selection algorithm steps, and more
details are described in the next section.

Small set of Selected

All concretized Selection algorithm

FSM M tests D for M non-concretized|concretized
Sts tests for M tests for Step 1
@ »| Identify all redundant tests in
¢ T T the convergence-preserving set O
s={}; G={};
Our Test Reuse Strategy *
Step 1 Condition 1
.—P‘ Process all defined tests ®
; Step 2
Increment tests Step 2
using a test Select one transition t of M;
generation method Select test a in O that covers t;
Step 3 *

Given one test a identify the set of
related tests E required to cover t
S=S+{E}; G=G+{a}

Select tests using our algorithm ‘

(a) (b)

Fig. 1. (a) IRT-SPL test reuse strategy, and (b) selection algorithm.

The relations C' and D represent subsets of i, (T")-convergent and S, (1)-
divergent, respectively. The relation D is initially the set of all pairs of T-separated
tests according to Definition 1. Next, a M-divergent state cover set K with n
tests is identified. The relation C is the set of all pairs of &, (T")-convergent tests
according to Definition 2 (including the identity set where («, @) € C'). We used

10 rules that were introduced in [4] to identify extra pairs of convergent and
divergent test pairs in C' and D, respectively. The ten rules are [4]:

1. If (e, 8) is added to C, for each (a, x) € C, add (3, x) to C.

2. If (o, 8) is added to C, then, for all their common extensions agp, Sp € T,
add (o, Bp) to C.

3. If (a,p) is added to D, and they are common extensions of tests o’ and 3,
then add (o/, 8') to D.

4. If (o, B) is added to C, then, for each x € T if (o, x) € D, add (5, x) to D;
if (B,x) € D, add (a, x) to D.

5. If (o, B) is added to D, then, for each x € T if (o, x) € C, add (5, x) to D;
if (8,x) € C, add (a, x) to D.

6. If (o, B), with @ < 8, is added to D and there exists sequence ¢ and k > 1,
such that 8 = ap®, then add (a, ayp) to D.

7. If (a,afBy) is added to C, and («, ay) € D, then add (o,) to D.

8. If (o, y) is added to D, then, for each sequence S such that (o, afy) € C,
add (a, af8) to D.

9. If (e, ary) is added to C, then, for each sequence /3 such that (8, 8vy) € D,
add (a,) to D.

10. If (8, By) is added to D, then, for each sequence « such that (o, ay) € C,
add (o, 8) to D.

The relation Cy(K) = {f|(«, B) € C,x € K} is an 3, (T')-convergence-preserving
set for M according to Definition 3. Moreover, we define sets V' C C' U D for
verified pairs of tests of C' and D, G C Cy(K) for goal coverage, and S C T to
store the selected tests of T'. To identify convergent and divergent pairs that were
added to C and D by rules 1-10, we use designed inverse rules to trace tests back
to T-separated pairs where they originally came from.

11. If (8,x) € C was added by rule 1, then check (o, 8), (a, x) € C

12. If (v, Bp) € C was added by rule 2, then check (o, 8) € C
13. If (e, B) € D was added by rule 3, then check (ary, B'y) eD.
14. (a X) € D was added by rule 4, then check (8,x) € D, («,8) € C.
15. If (e, x) € D was added by rule 5, then check (3, x) € C,(a, 8) € D.
16. If (o, ap) € D was added by rule 6, then check («, 5) € D, W1th a<B,p=
apk k> 1.
17. If (a, af) € D was added by rule 7, then check (o, ay) € D, (e, afy) € C.
18. If (a,af) € D was added by rule 8, then check (o, ay) € D, (o, af87y) € C.
19. If (e, B) € D was added by rule 9, then check (5, 87v) € D, (o, ay) € C
If (a,

20. B) € D was added by rule 10, then check (5, 5v) € D, (a ory)

2.2 Detailed Selection Algorithm

The main detailed steps of the selection algorithm are presented in Figure 2.

Given an FSM M and n-complete test suite 7" for M, initially the algorithm
processes T and identify sets D, K, C, and C,(K). Some tests may be added in
those sets (except K) by rules 1-10. The verification set V' start empty, coverage
set G initialized, and the resulting selected set S empty.

Step 1
n-complete Test Suite 7' (D := T-separated Tests pairs
for FSM M Find a M-divergent state cover set K with n tests
C := S, (T)-convergent test pairs
Apply Rules 1-10
Cy(K) := init. convergent-preserving tran. cover set

n-complete Test Suite S

for FSM M Vi={} G:={}S:={}

Condition 1

an init. convergent-

preserving tran. cover set
for M?

S :=SU{a}

Step 2
Vi=Vu s

Select a transition ¢ not covered by G G=Gu E((;; X

and select a test a € Cy(K) s.t. « covers ’

(a,x) tXEK, (a,x) €C,and (a,x) ¢V
Step 3 i Yes

For every v € K\{x},
(o, v) € D?

For every v € K\{x},
(,v) € V?

Identify Rule 11-12
S :=SU{a,x}

Step 3.1

V=V U{(e,x)} §:=SU{ay, vy}

V=V U{(a,v)}

If (o/,X') ¢V

(v, x) == (o, X)) Identify Rule 13-20
e S :=SuU{a,v}
V=V U{(a,0)}

Fig. 2. Algorithm for reducing an n-complete test suite.

Condition 1 checks whether G meets the condition of a n-complete test suite,
and since it is initially empty Step 2 is executed. To populate G first select a
transition ¢ not covered by G and select a test a € Cy(K) such that « covers
t,x € K, (a,x) € C, and (o, x) ¢ V. Then, we check whether the pair (o, x)
was added to C' by some rule or by Lemma 2. Let Condition 2 be true for (a, x),
then on Condition 3 no pair («a,v) is true as V' is empty at this point. Moving to
Condition 4, let it be true, then tests oy, vy are added to S and («,v) added
to V marking this pair as visited and checked. Back to Condition 3, assuming
that every other pair (a,v) make Condition 4 true, then after verifying them
Condition 3 turns true, (o, x) is added to V, a is added to S and G finishing the
basic cycle for .

Let Step 2 select a test pair not verified (3, x) € C that was added to C' by
rule 1. If Condition 2 turn false, then Step 5 identify pairs e.g., («, 8), (o, x) € C
by rule 11 that were used to add (8, x) in C, then, add 8 and x to S and put
(8,x) in S to mark as verified. First, if (o, 8) ¢ V then the execution continues
on Condition 2 for («, 3) instead of (8, x) and («, x) enters in a waiting state. If
(o, B) € V, then (o, B) is ignored, and if (a, x) ¢ V then the execution continues
on Condition 2 for («,x) instead of (8, x). However, if («, 8), (a, x) € V then
the execution returns to the last waiting state. If there is no waiting point to
return, then the execution stops with a failure, and T is not n-complete.

On Condition 3 for every pair («a,v) ¢ V select one and use as input for
Condition 4 and put the rest in a waiting state. If Condition 4 is false, then
identify which pairs of tests were responsible on the addition of (a,v) to D,
then add « and v to S, and (a,v) to V to mark as verified. For example, if
(o,v) was triggered by Rule 14, then (8,v) € D,(«a,8) € C. If (B,v) ¢ V
then the execution continues on Condition 4 for (5,v) and («, 8) enters in a
waiting state. If (8,v) € V, then (8,v) is ignored, and if («, 3) ¢ V then the
execution continues on Condition 2 for («, 8). However, if (3,v), (a, 8) € V then
the execution returns to the last waiting state. If there is no waiting point to
return, then the execution stops with a failure, and T is not n-complete.

2.3 Analysis

In the remainder of this section, we prove that the algorithm terminates and the
obtained test suite S is indeed n-complete.

Theorem 2. Given an n-complete test suite T for an FSM M, the algorithm
terminates with an n-complete test suite S CT.

Proof. The algorithm contains four cycles. We show that each cycle can be
executed a finite number of times and, thus, the algorithm indeed terminates.
Then, we prove that the resulting test suite is n-complete.

Cycle 1 corresponds to the executions where Condition 1 does not hold, but
Conditions 2-3 do, i.e. select tests to populate G. As the selected pair («, x)
cannot be in the set of verified pairs V' and the number of pairs in C is finite, at
the end of the cycle (¢, x) is put in V' and cannot be selected again, thus, the
number of executions of Cycle 1 is bounded.

Cycle 2 corresponds to the executions where Condition 3 does not hold, but
Condition 4 does, i.e. the pair («,v) is T-separated. On Step 3 (a,v) is put in V
to mark as verified. As the number of pairs in D is finite, the Cycle is bounded
to D size.

Cycle 3 corresponds to the executions where Condition 2 does not hold, i.e.
the pair (o, x) was added to C by rules. On Step 5 (o, x) is put in V' to mark as
verified. The cycle continues only if one of the responsible pairs for (¢, x) is not
in V, otherwise, the execution returns to the last waiting state. As the number
of pairs in C is finite, the Cycle is bounded to C size.

Cycle 4 corresponds to the executions where Condition 4 does not hold, i.e.
the pair (o, v) was added to D by rules. On Step 4 («,v) is put in V' to mark as
verified. The cycle continues only if one of the responsible pairs for (o, v) is not
in V, otherwise, the execution returns to the last waiting state. As the number
of pairs in D is finite, the Cycle is bounded to D size.

Given an FSM M, we now show that the obtained test suite S is n-complete.
When the algorithm terminates, Condition 1 holds and G is an initialized $,,(.5)-
convergent-preserving transition cover set for M, by Definition 1. For every test
a added to G, a subset of tests that made o € Cy(K) were added to S resulting
in a n-complete test suite for M. O

The time required to execute the algorithm is similar to the P method, since
several steps have the same complexity executed in inverse order. However there
are two exceptions: the state cover set K that was identified by simple breadth-
search instead of a clique; and we only apply the first 10 rules on the first step
instead of each step of P method. We refer to [4] for more details about the
complexity on each step.

References

1. Chow, T.S.: Testing Software Design Modeled by Finite-State Machines. IEEE
Transactions on Software Engineering SE-4(3), 178-187 (1978)

2. Endo, A.T., Simao, A.: Evaluating test suite characteristics, cost, and effectiveness of
FSM-based testing methods. Information and Software Technology 55(6), 1045-1062
(2013)

3. Luo, G., Petrenko, A., Petrenko, R., Bochmann, G.V.: Selecting Test Sequences For
Partially-Specified Nondeterministic Finite State Machines. In: Proc. of IFIP 1994.
pp. 91-106 (1994)

4. Simao, A., Petrenko, A.: Fault Coverage-Driven Incremental Test Generation. The
Computer Journal 53(9), 1508-1522 (2010)

