
Fault Model-Based Testing
from State-Oriented Models

Alexandre Petrenko

Computer Research Institute of Montreal (CRIM), Canada

HSST 2016, Halmstadt, Sweden

To Model or Not to Model, That is the Question

Testers become test modellers “Palais Idéal” is still built by many
without any modelling

2

Given Test Model, What To Cover By Tests?

• Usual model/specification coverage
• Executions

• Structural elements

• Testing can be used to show the presence of bugs,
but never to show their absence [Dijkstra]

• Yet can testing at least guarantee that
no bugs of a predefined type are left?

• To achieve this fault models are needed

• Model coverage is not fault coverage

3

General Fault Model for Testing
(Specification, Conformance Relation, Fault Domain)

• Specification is a state-oriented model: Finite State Machine (FSM) or
Input Output Transition System (IOTS)

• Fault domain is a set of Implementations Under Test (IUT) treated as
black box and modelled by FSM or IOTS,
it formalizes test assumptions

• Conformance relation is defined as a relation on FSM or IOTS

IUT

Tester

Spec

verdict: does

IUT conform to Spec?

4

Complete Test Suite for Fault Model

• Test suite is sound if no conforming IUT from a given fault domain fails it

• Test suite is exhaustive if each nonconforming IUT from a given fault
domain fails it

• Test suite is complete for a given fault model
if it is both, sound and exhaustive

• Since life is short, complete test suite must be finite

• The first complete test suites called checking experiments have been
studied since 1960s (model-based testing has started!)

5

6

Test Completeness and Fault Coverage
Complete test suite provides a full fault coverage
within a given fault domain

a smaller fault domain usually requires a shorter complete test

Conformance

relation

Nonconforming

implementations

Fault domain

Conforming

implementations

The Holy Grail for Fault Model-based Testing
A method which given an instance of a fault model

generates a minimal complete test suite

7

Tutorial Aims at Explaining

•Diversity of FSM and IOTS models used
for fault model-based testing

•Variety of fault models

•Basic ideas of constructing complete test suites for
some fault models

8

Finite State Machines

9

10

Typical Finite State Machine

Inputs: coin, button, hit

Outputs: lamp, espresso, idle

States: 1 (wait for coin), 2 (wait for button)

button/idle
hit/idle

coin/idle
hit/idle

1

2

button/
espresso

coin/lamp

atomic
actions

coin
button

hit

lamp
espresso

idle

11

Specification FSM A = (S, s0, X, Y, d, l)

S - finite set of states, s0 is initial state

X - finite set of inputs

Y - finite set of outputs

d: S  X  S - transition function

l: S  X  Y - output function

Mealy machine

FSM can be viewed as a Finite Automaton

• each state is final (accepting)

• input-output pair is a symbol

Equivalence Relation

• Aka trace equivalence

• Let A = (S, s0, X, Y, δ, λ)

• States s and s are equivalent if for each input sequence α  X* it holds
that λ(s, α) = λ(s, α)

• States s and s are distinguishable if there exists input sequence α  X*
such that λ(s, α)  λ(s, α); α is distinguishing sequence for s and s

• The length of a distinguishing sequence for two states in (completely
specified) FSM does not need to exceed the number of states

• A is reduced (minimal) if it has no equivalent states

• Each completely specified FSM has a unique reduced form

12

Conformance Relation for Mealy Machines

• Conformance relation is equivalence

• Conforming IUT is modelled by a machine equivalent to the
specification machine

• For each nonconforming IUT there exists an input sequence
distinguishing it from the specification machine; this is a test on
which it fails

13

Faults in FSM Implementations

• Faults are modelled as mutants of a specification machine forming a
fault domain

• Mutations mimic the implementation process

• Initialization fault – wrong initial state

• Output fault - wrong output of transition

• Transfer fault - wrong end state of transition
• Creating additional states
• Reducing or maintaining the number of states

• Transition fault - wrong output or end state of transition

• Mutants can have multiple faults (high order mutants)

14

Mutation Testing with FSM

• Mutation testing is suggested first in 1964 for FSM; each mutant
models specific type of hardware faults (stuck-at 0, 1)

• It predates software mutation testing

• Tests are obtained by mutant killing

1

2

coin/lamp
button/
espresso

button/idle
hit/idle

coin/idle
hit/idle

1

2

coin/lamp
hit/idle

button/
espresso

button/idle

coin/idle
hit/idle

15

Mutant Killing

Test hit.button kills the mutant

1

2

coin/lamp
button/
espresso

button/idle
hit/idle

coin/idle
hit/idle

1

2

coin/lamp
hit/idle

button/
espresso

button/idle

coin/idle
hit/idle

16

17

FSM Mutant Killing

Spec and mutant IUT

IUT

no

SpecIUT

Spec

equal outputs?

This is FSM product
used, e.g., for
verification purposes

test

Mutant Killing with FSM Product Equipped
with Fail State

All ests distinguishing Mutant and Spec
are given by the paths to the fail-state
bba, bbbba and so on. b{bb}*ba
If the product has no fail-state, the mutant conforms to Spec

b/1 0 1 2
a/0 a/0

a/0
a/0 p r q

b/1 b/1

b/1
a/0

FSM Spec FSM Mutant

a/1

a/0

0p

0r

1p

a/0

b/1

2p

fail0q

b/1

b/1

1r 2r

a/0

a/0
a/0

a/0

SpecMutant

a/?

18

General Fault Domain

• A set of mutants each modelling a particular test assumption

• A general fault domain is the universe of all machines with a predefined
maximal number of states m

• The number of all Mealy machines with m states, p inputs, o outputs is

(mo)mp

• Test assumption is that anything may go wrong, i.e., all transition faults,
but the number of states in IUT does not exceed a chosen limit m

• Complete test suites for this fault domain are traditionally called checking
experiments, aka m-complete test suites

19

20

Deriving Complete Test Suite for Enumerated Mutants

Fault domain is a list of arbitrary mutants

Step 1. For each mutant in a fault domain

• Construct the product

• Determine one or several tests killing the mutant

Step 2. Determine a minimal number of tests killing all mutants by

solving a set cover problem

• More mutants need more tests

• Mutant enumeration can be avoided following the state

identification approach (checking experiment)

State Identification
(Complete Tests for Initialization Faults)
• Fault domain is a set of mutants, each mutant is an instance of the

specification machine A = (S, s0, X, Y, δ, λ) initialized in a different
state, i.e., Mi = (S, si, X, Y, δ, λ), si  s0

• The number of mutants is n – 1, where n is the number of states in
the specification machine

• A complete test suite W(s0) is a set of input sequences distinguishing
s0 from all the other states

• W(s0) is a state identification experiment for state s0 or simply
state identifier for s0

21

Variety of State Identifiers

• Let W(s0), …, W(sn-1) be state identifiers for A = (S, s0, X, Y, δ, λ)

• If W(s0) = …= W(sn-1) = W then W is a characterization set of A

• If W(si) is a singleton then it is called a UIO sequence of si
it provides an output signature of the state

• If a sequence is an UIO of all the states then it is a distinguishing sequence of A

• Family of Harmonized State Identifiers (HSI) {W(s0), …, W(sn-1)} such that in
each pair of state identifiers W(s) and W(s) there exist two sequences with a
common prefix α, such that λ(s, α)  λ(s, α)

22

Example

s1

s2 s3

a/o

a/o a/1

b/1b/1

b/0

W(s1) = b is UIO

W(s3) = a is UIO

W(s2) = {a, b}, s2 has no UIO sequence

{a, b} is a characterization set of A

A has no distinguishing sequence:

If we take a then states s1 and s2 are no
longer distinguishable

If we take b then states s2 and s3 are no
longer distinguishable

a b

s1 s1/0 s3/0

s2 s1/0 s2/1

s3 s3/1 s2/1

A

23

Distinguishing Sequence for FSM

2

41

5

3

a/0

a/1

a/1

a/0

a/0

b/1

b/0

b/0

b/1

b/1

a b a

1 0 1 0

2 0 1 1

3 1 0 1

4 0 0 1

5 1 1 0

aba is a distinguishing sequence for AA

Output sequences

24

Example of Harmonized State Identifiers

2

41

5

3

a/0

a/1

a/1

a/0

a/0

b/1

b/0

b/0

b/1

b/1

A W = {aba}
W(1) = {aba}
W(2) = {aba}
W(3) = {ab}
W(4) = {ab}
W(5) = {ab}

Family of Harmonized State Identifiers {W(1), W(2), W(3), W(4), W(5)}

a b a

1 0 1 0

2 0 1 1

3 1 0 1

4 0 0 1

5 1 1 0

Output sequences

25

What Are State Identifiers For?

• Used by various methods which generate complete test suites for Mealy
machines

• Characterization sets in the W-method
(Vasilevskiy, 1973; Chow 1978, improved by Bochmann et al 1991, Wp-
method)

• Distinguishing sequences in the DS-method
(Hennie 1964; continuously being improved)

• UIO sequences in the UIOv-method
(Vuong, 1989)

• Harmonized State Identifiers in the HSI-method
(Petrenko & Yevtushenko, 1990; later H and SPY methods)

26

M-Complete Test Suite

• Fault model is (Specification, Conformance Relation, Fault Domain)

• Specification is a reduced Mealy machine A = (S, s0, X, Y, δ, λ), |S| = n

• Conformance relation is equivalence

• Fault domain is the universe of all machines with a predefined maximal
number of states m
• Fault do not increase the number of states, m = n = |S|

• Faults may increase the number of states, m  n = |S|

• Test suite complete for such a fault model is called m-complete test suite

27

The Basic Idea of Constructing M-Complete
Test Suites For FSM
• Reach every state in any IUT from the fault domain

• Check each reached state using some state identifiers built from the
specification FSM

• Execute all transitions from each reached state

• Check the end state of each transition using the same state identifiers

• Corresponding test fragments are
• transfer sequences to reach states in the specification FSM
• sets of sequences extending the transfer sequences to execute all transitions

from IUT states
• state identifiers

28

W-method for N-complete Test Suite
• A = (S, s0, X, Y, δ, λ) with n states

• Determine a single transfer sequence for each state, obtaining a state
cover V = {α0, …, αn-1}, where α0 = , empty sequence;

• Determine a transition cover by adding each input to every transfer
sequence in the state cover VX = {αix| αi  V, x  X}

• Construct a characterization set W

• Concatenate sets V  VX and W to obtain an n-complete test suite

(V  VX)W = {α| α  (V  VX),   W}

29

30

button identifies the states, it is a DS

so is coin, but it is more expensive 

1

121

button coin kick

221

button coin kick

button button button

button button

1

2

coin/lamp
button/

espresso

button/idle

kick/idle

coin/idle

kick/idle

Example with W-method, I

Example with W-method, II

2

41

5

3

a/0

a/1

a/1

a/0

a/0

b/1

b/0

b/0

b/1

b/1

State Cover V = {, a, aa, aab, aaba}

Transition Cover VX = {, a, aa, aab,
aaba}{a, b} = {a, aa, aaa, aaba, aabaa, b,
ab, aab, aabb, aabab}

Choose, e.g., W = {aba}

(V  VX)W = {, a, aa, aab, aaba, aaa, aabaa, b, ab, aabb, aabab}{aba} =
{aba, aaba, aaaba, aababa, aabaaba, aaaaba, aabaaaba, baba, ababa,
aabbaba, aabababa} 31

W-method for M-Complete Test Suite
• Fault domain is the universe of all machines with a predefined

maximal number of states m, fault may increase the number of states,
m  n = |S|

• The number of additional states in IUT can reach m - n; any additional
state can be reached by an state cover extended with all input
sequences of length at most m – n in the set X(m - n)

• Transition cover then becomes VX(m - n)X = VX(m – n+1)

• M-complete test suite is then

VX(m – n+1)W
• N-complete test suite is a special case of m-complete test suite

VX1W
32

HSI-method

• It uses a family of harmonized state identifiers
F = {W(s0), …, W(sn-1)} instead of a single characterization set

VX(m – n+1)@F =
{α| α  VX(m – n+1),   W(d(s0, α)), W(d(s0, α))  F}

• This method allows to define state identifiers for partially specified FSMs
which may not have any characterization set

33

Example with HSI-method

HSI: W(1) = W(2) = {aba}
W(3) = W(4) = W(5) = {ab}

2

41

5

3

a/0

a/1

a/1

a/0

a/0

b/1

b/0

b/0

b/1

b/1

State Cover V = {, a, aa, aab, aaba}

Transition Cover VX = {, a, aa, aab,
aaba}{a, b} = {a, aa, aaa, aaba, aabaa, b,
ab, aab, aabb, aabab}

The resulting n-complete test suite is shorter than the one of W-method, since
the latter always concatenates aba, while now its prefixes are used

34

35

How Complex are Complete Tests for CFSM?

• Given FSM with n states, any two non-equivalent states can already be
distinguished by at most n-1 inputs

• We need no more than n-1 input sequences to obtain a characterization
set/HSI

• The length of n-complete test is at most pn3, where p is the number of inputs

• The length of m-complete test is exponential pm-n+1n3, m  n

36

Mealy Machine is Completely Specified

• A = (S, s0, X, Y, d, l)
S - finite set of states, s0 is initial state

X - finite set of inputs

Y - finite set of outputs

d: S  X  S - transition function

l: S  X  Y - output function

• There are partially specified (partial) machines

37

FSM Redefined

• FSM A = (S, s0, X, Y, D, d, l)
S - finite set of states, s0 is initial state

X - finite set of inputs

Y - finite set of outputs

D  (S  X) - specification domain

d: D  S - transition function

l: D  Y - output function

Complete FSM if D = S  X; partial FSM (PFSM) if D  (S  X)

Acceptable input sequences in X* traverse defined transitions

A(s) denote the set of all acceptable input sequences for state s

Example

1

2

coin/lamp
button/
espresso

Partial FSM

button/idle
hit/idle

coin/idle
hit/idle

1

2

button/
espresso

coin/lamp

Acceptable sequences – (coin.button)*
It is a partial test model, but FSM
implementations are completely specified

coin
button

hit

lamp
espresso

idle

38

How Missing Transitions Can Be Treated?
The behavior is not specified for some states and inputs, i.e., some
transitions are missing

• Implicitly defined transitions
• self-loops with the output “null/idle”, inputs are ignored (angelic completion)
• Transitions lead to a sink state with the output “error”

• Undefined by default transitions, i.e., don’t care transitions lead to a
chaos sink state with all outputs (demonic completion)

• Forbidden transitions
• The environment cannot provide certain input sequences, e.g., testing via context

(see slides later)
• Certain tests are not allowed (Chernobyl)
• Input variables can change only one at a time

39

Example
button/idle
hit/idle

coin/idle
hit/idle

1

2

button/
espresso

coin/lamp

1

2

coin/lamp
button/
espresso

Partial FSM

Implicitly defined transitions

coin, hit/error

1

2

button/
espresso

coin/lamp

button, hit/error

coin, button, hit/error
coin, hit/
lamp, espresso, idle

1

2

button/
espresso

coin/lamp

button, hit/lamp, espresso, idle

coin, button, hit/
lamp, espresso, idle

Undefined by default transitions

coin
button

hit

lamp
espresso

idle

40

Testing from Partial FSM

• Input enableness is usually assumed for implementations

• Following a chosen completeness assumption implicitly defined and
undefined by default transitions become explicitly defined and a
partial FSM is sometimes replaced for testing by a complete FSM

• Do we actually know how PFSM was completed in IUT?

• Partial FSM with forbidden transitions cannot be replaced by any
complete FSM

• The equivalence conformance relation needs to be weakened and
fault models adapted

41

PFSM Relations
• A = (S, s0, X, Y, D, δ, λ)

• States s and s are compatible if each input sequence acceptable in both states
produces the same output sequence
A(s) A(t) =  or λ(s, α) = λ(s, α) for all α  A(s) A(s)

• s is quasi-equivalent to s if they are compatible and sequences acceptable in s
are also acceptable in s
λ(s, α) = λ(s, α) for all α A(s) and A(s) A(s)

• States s and s are distinguishable if there exists α  A(s) A(s) such that
λ(s, α)  λ(s, α)

• The length of a distinguishing sequence for two states does not need to
exceed “n choose 2” = n(n-1)/2; cf. n for complete FSM

• A is reduced if it has no compatible states

• Compatibility is not transitive so partial FSM can have several reduced forms
as opposed to complete FSM

42

43

Upper Bound for Distinguishing Sequences in PFSM
Determining a sequence distinguishing states 1 and 2

The bound “n choose 2” is tight

/0

M-Complete Test Suite for PFSM

• Fault model is (Specification, Conformance Relation, Fault Domain)

• Specification is a partial not necessarily reduced FSM
A = (S, s0, X, Y, D, δ, λ)

• Conformance relation is quasi-equivalence,
since all IUTs are complete machines

• Fault domain is the universe of all complete machines
with a predefined maximal number of states m

• The bound m cannot be lower than the number of pairwise
distinguishable states in A which can be smaller than n = |S|

44

Building m-Complete Test Suite for PFSM

• State identification approach fails because of compatible states

• State-Counting approach (Petrenko & Yevtushenko, 1989, 2000)
generalizes the state identification approach

• The idea is based on the above example:
determine all acceptable input sequences from each state such that
each state of the specification is traversed at least m times

• The value of m can be reduced if the specification has
• quasi-equivalent or

• distinguishable states, so state distinguishing sequences can be employed

45

46

Mealy Machine is Deterministic

• A = (S, s0, X, Y, d, l)
S - finite set of states, s0 is initial state

X - finite set of inputs

Y - finite set of outputs

d: S  X  S - transition function

l: S  X  Y - output function

• There are nondeterministic machines

FSM Redefined Again
A = (S, s0, X, Y, T)

S - finite set of states, s0 is the initial state

X - finite set of inputs

Y - finite set of outputs

T - transition relation T  S  X  Y  S
quadruple (s, x, y, s’)  T is a transition

A is complete if for each (s, x)  S  X it has at least one transition

deterministic if for each (s, x)  S  X it has at most one transition

nondeterministic if for some (s, x)  S  X it has several transitions

observable if for each (s, x, y)  S  X  Y it has at most one transition;
non-observable FSM can be made observable by determinization

47

Is Nondeterminism Really a Problem in Testing?
• Nondeterminism contradicts the general feeling that

computer systems are deterministic, so we might wonder
whether there is any real meaning to use the term
nondeterminism, or whether it is a useful, but essentially
meaningless, formal trick (A. J. Dix, 1990)

• It is a good practice to design systems for testability, and one
important aspect of testability is that you can reproduce test results
many times, and this implies that the system should be as deterministic
as possible. The issue of testing nondeterministic systems is therefore,
albeit real, relatively minor at least in the current practice
(A. Huima, 2011)

48

Various Sources of Nondeterminism

• Concurrency modelled by interleavings

• Abstractions, under-specification (undefined by default transitions),
options, uncertainty

• Asynchronous communication, unknown delays

• Partial controllability

• Partial observability

• Distributed interfaces: the actual order of events is unknown

• Random choice implemented in some applications

49

NFSM Example

1

2

coin/lamp
button/
espresso

button/idle
hit/idle

coin/idle
hit/idle

hit/lamp

in Implementations!coin/espresso

in Spec!

50

Testing NFSM is a Challenge

• In NFSM input sequence can produce several output sequences and bring
the machine into different states

• Two main test scenarios
• Specification is nondeterministic, but IUT is deterministic

• Both, specification and IUT, are nondeterministic

• Testing nondeterministic IUT requires some fairness/all weather
assumption:
there exists k such that, if input sequence is applied to IUT k times,
the tester concludes that all possible output sequences are observed

• Testing becomes adaptive, so tests are also NFSM as opposed to DFSM tests
which are input sequences

51

NFSM Relations

• FSM A = (S, s0, X, Y, T)
• States s and s are (trace) equivalent if their sets of traces coincide, i.e.,

Tr(s) = Tr(s)
• s and s are distinguishable if Tr(s)  Tr(s), there exists input sequence

α  X* such that out(s, α)  out(s, α)
α is distinguishing sequence for s and s

• s is a reduction of s if Tr(s)  Tr(s), trace inclusion
• s and sare r-compatible, if they have a common reduction, i.e.,

there exists a state of a complete FSM that is a reduction of both states
• s and s are r-distinguishable, if they have no common reduction, i.e.,

no state of any complete FSM can be a reduction of both states
• several input sequences may be needed
• the bound is n2

52

a/0

Example of R-distinguishability

1 2

4

c/1

a/1

a,c/1

a,c/0

c/1

c/1a/1

b/0

a/0

3

b/0

a/0 b/1

b/1

a/0

b/1

1

13
a/1

b/0

a/1

32

3

24

a/0

b/? a/?

a/0

13
a/1

c/1

b/1

32 24

c/1

44

c/1

22

Specification NFSM Fragment of the product Adaptive test r-distinguishing
for states 1 and 3 states 1 and 3

Adaptive tests r-distinguishing states are called separators

b/0

53

Fault Models for NFSM
• Fault model is (Specification, Conformance Relation, Fault Domain)

• Specification is NFSM A = (S, s0, X, Y, T)

• Case 1
• Fault domain is the universe of all NFSMs with a predefined maximal number of

states m
• Conformance relation is trace equivalence

• Case 2
• Fault domain is the universe of all NFSMs with a predefined maximal number of

states m
• Conformance relation is trace inclusion

• Case 3
• Fault domain is the universe of all DFSMs with a predefined maximal number of

states m
• Conformance relation is trace inclusion

54

M-Complete Test Suite for NFSM and
Equivalence Relation
• Fault model is (Specification, Conformance Relation, Fault Domain)

• Specification is a reduced NFSM A = (S, s0, X, Y, T)

• Conformance relation is trace equivalence

• Fault domain is the universe of all NFSMs with a predefined maximal
number of states m

• M-complete test suite can be obtained
by mimicking steps of the W-method for DFSM

VX(m–n+1)W

55

Fault Model for NFSM and Reduction Relation

• Fault model is (Specification, Conformance Relation, Fault Domain)

• Specification is an NFSM A = (S, s0, X, Y, T)

• Conformance relation is reduction

• Fault domain is the universe of all NFSMs and DFSMs with a
predefined maximal number of states m, not less than the number of
pairwise r-distinguishable states

• Multiple test execution only if the fault domain includes NFSMs

• Characterization set W for the equivalence relation cannot be used,
separators play its role

56

Recall the Basic Idea of Constructing
m-Complete Test Suites
• Reach every state in any IUT from the fault domain

• Check the reached state using some state identifiers

• Execute all transitions from each reached state

• Check the end state of each transition using the same state identifiers

• Fragments of complete test suite
• transfer sequences to reach states in the specification FSM

• sets of sequences extending the transfer sequences to execute all transitions
from IUT states

• state identifiers

57

Challenges of Constructing Transfer Sequences

• Transfer sequences to reach states in the specification FSM if it is
nondeterministic?

• State reachability for NFSM

• Reachable by preset transfer input sequence (deterministically reachable)

• Reachable by adaptive tests, i.e., adaptive preambles (definitely reachable)

• No adaptive homing test exists

• Some states of NFSM A = (S, s0, X, Y, T) may not even be implemented
in an IUT conforming wrt reduction relation, since it is allowed not to
have all the traces of A

58

State Preamble Example

a/0

1

a/1

3
a/0

4

a/1

b/1

2

1 2

4

c/1

a/1

a,c/1

a,c/0

c/1

c/1a/1

b/0

3

b/0

a/0 b/1

b/1

a/0

How state 2 can be reached?

Here is a preamble

59

Building m-Complete Test Suite For NFSM

• Preambles are used to reach definitely reachable states

• Traversal sequences are determined as in case of partial DFSM, such
that each state of the specification is traversed no more than m times

• The parameter m can be reduced if the specification has
• r-compatible states or
• r-distinguishable states

• State separators used for state identifiers

The SC-method by Petrenko & Yevtushenko
(recent versions in 2011 and 2014)

60

M-Complete Test Suites Come at a Price

• Scalability and expressiveness
• M-complete tests may explode

• All the ingredients of the FSM model are finite, as a result such a model without
extensions may become to be too big to construct and execute tests

• FSM model does not support the use of variables/parameters

• How we can deal with this
• Generate tests incrementally

• Use communicating FSMs

• Use mutation machines to specify fault domains
as subsets of the universe of all FSMs

• Consider extended FSM models
61

Incremental Generation of Complete Test Suite

• The idea is to find sufficient conditions for p-completeness

• Given a test suite determine additional tests which satisfy these
conditions

• Increment p and iterate until the desired value is reached or the
size of the obtained test suite reaches a predefined limit

• See the P-method, see Petrenko & Simao, “Fault Coverage-
Driven Incremental Test Generation”, 2009

62

M-Complete Test Suites Come at a Price

How to deal with this
• Generate tests incrementally

• Use communicating FSMs

• Use mutation machines to specify fault domains
as subsets of the universe of all FSMs

• Consider extended FSM models

63

64

Testing Communicating FSMs

• Given a system of ComFSM, derive a (complete) test suite
using external inputs and outputs

• Variety of testing scenarios
• faults in individual FSMs or in channels

• some FSMs are fault-free

• internal actions are observable or not

• distributed testing with synchronized testers

65

Example of Communicating FSMs

Lamp
Espresso
Idle

Coin
Button
Hit

Espresso-please
Money

Espresso-served
Thanks
Sorry

1

2

C/LB/E

B/I

H/I

C/I

H/I

c

b d

a M/T

I/H

Ep/C

E/Es
L/B

E/EsL/H

I/S

Machine Waiter Global FSM

Ep/S Ep/S

M/T

Ep/Es

M/T

A B

M/T

Ep/S

M-Complete Test Suites Come at a Price

How to deal with this
• Generate tests incrementally

• Use communicating FSMs

• Use mutation machines to specify fault domains
as subsets of the universe of all FSMs

• Consider extended FSM models

66

Using Mutation Machines to Specify
Fault Domains

1 2 3

4

a/0

b/0

a/1
b/0

b/0

a/0

a/0
b/0

1 2 3

4

I/O

I/O

I/O
I/O

I/O

I/O

I/O
I/O

I/O = {x/y | x  X, y  Y}

Chaos FSM, which represents all possible mutants in the fault domain with at most 4 states
It is called a mutation machine, each deterministic submachine is a mutant
Their number is (|S|  |O|)|S|  |I| = (42)42 = 16,777,216
4-complete test suite for this fault model kills all the mutants

I/O

67

Example of Restricted Fault Domain

1 2 3

4

a/0

b/0

a/1
b/0

b/0

a/0

a/0
b/0

1 2 3

4

a/0

b/0

a/1
b/0

b/0

a/0

a/0
b/0

a/1

a/1

b/0

The mutation machine has 6 suspicious transitions in red
3 mutated transitions in dash lines (output fault and two transition faults
The fault domain includes 8 deterministic submachines, so 7 mutants
they can be enumerated as in mutation testing

68

Testing Based on Mutation Machines

• Fault model is (Specification, Conformance Relation, Fault Domain)
• Specification is a DFSM A = (S, s0, X, Y, δ, λ)
• Conformance relation is equivalence
• Fault domain is the set of all deterministic submachines of A
• Test generation methods using state identification facilities can be adopted

to deal with non-chaotic mutation machines
• See our papers co-authored with Koufareva, Yevtushenko and Grunskiy

• Test completeness can be checked for this fault model
• The idea is to use again an FSM product
• See our paper “Multiple Mutation Testing from FSM”, FORTE 2016

69

Distinguishing Automaton

1 2 3

4

a/0

b/0

a/1
b/0

b/0

a/0

a/0
b/0

1 2 3

4

a/0

b/0

a/1
b/0

b/0

a/0

a/0
b/0

a/1

a/1

b/0

Specification FSM

Mutation FSM
70

Mutation Coverage Analysis
The idea is to determine constraints on transitions in all the mutants
killed by a test case

Example: baaba

two revealing executions

Any mutant Is killed by the test baaba if it includes suspicious
transitions (3, a, 1, 3) OR ((3, a, 0, 3) AND (3, b, 0, 3) AND (3, a, 0, 3))
The negated constraint characterizes the survived mutants

1 2 3

4

a/0

b/0

a/1
b/0

b/0

a/0

a/0
b/0

a/1

a/1

b/0

71

Checking Test Completeness for a Given Fault Model

Input: a test suite TS for a specification and mutation machine

1. For each a  TS, build the disjunction of constraints excluding
the a-revealing executions

2. Build the conjunction of the obtained disjunctions and add the constraint
that excludes the solution defining the specification machine

3. Check the satisfiability of the constraint by calling a solver

4. If it is not satisfiable terminate with the message “TS is complete”,
otherwise check whether the mutant defined by a solution is conforming

5. If it is nonconforming terminate with the message “TS is incomplete”,
otherwise add the constraint that excludes the conforming mutant and go
to Step 3

72

Experimental Results for Randomly Generated
Mutation Machines

73

Mhvac M+20 M+100 M+428 M+764

Mut. Trans. 46 66 146 474 810

Mutants 6.91010 5.51016 3.11038 2.210108 3.910163

Tests 36 55 140 369 1111

Sec. 3 7 24 86 1013

A specification for an automotive controller with 336 transitions

M-Complete Test Suites Come at a Price

How to deal with this
• Generate tests incrementally

• Use communicating FSMs

• Use mutation machines to specify fault domains
as subsets of the universe of all FSMs

• Consider extended FSM models

74

Extended FSM Models
• FSM can be extended with variables, parameters, guards and operations on

them (time can also be added)

• Once internal variables are used the number of complete states may
become unbounded, so FSM methods are not applicable

• Fault model-based testing of extended FSMs (EFSMs) has not yet reached
the level of maturity of that of the classical FSMs

• Mutation approach with mutation operations is applicable

• EFSM equivalence is in general undecidable

• This motivates investigation of special classes of EFSMs for which complete
test suites could be derived (FSM with Symbolic Inputs, see our paper in
ICTSS 2015)

75

Complete Test Generation for FSM Needs
More Research
• M-complete test suite for partial non-observable NFSM?

• Complete test suites using mutation machines?

• Complete test suites for an arbitrary fault model?

• General types of Extended FSM?

76

Input/Output Transition Systems

77

Outline

• Informal discussion of IOTS

• For formal definitions and ioco based testing theory,
see the HSST 2014 tutorial, Tretmans, “Model-Based Testing - There is
Nothing More Practical than a Good Theory”

• The ioco conformance relation and problems of using it

• Asynchronous testing

• Special IOTS classes for which complete test suites are suggested
• Mealy IOTS

• Input-eager IOTS

78

79

Labeled Transition Systems

• Difference between inputs and outputs is abstracted away
• LTS is a finite automaton, every state is accepting
• LTS communicate by rendezvous
• Actions are controllable, “refusal” is observed

• Several refusal-based conformance relations and test methods exist, see
Glabbeek, “The linear time-branching time spectrum”, 1990

s
a

{b,c,d}/refusal

s s
a/a

s

80

Example of Input/Output Transition System

coin

coffee

milk

?coin

!coffee !milk

?coin

?coin

?coin

?coin



State is quiescent if no output is enabled Its observation needs timer

Inputs may occur at states that are not quiescent

Rich choice of conformance relations which use traces, quiescent traces,

suspension traces

Input Enableness of IOTS

• IOTS is LTS with Input-Output and always enabled inputs

• I/O automaton, interface automaton

• Interpretation of unspecified transitions similar to partial FSM
• Implicitly defined transitions: inputs lead to a sink state with the output

“error”

• Undefined by default transitions: don’t care transitions lead to a chaos sink
state with all outputs (demonic completion)

• Forbidden transitions: the environment cannot provide some input sequences

81

IOCO Relation and Test Generation
• i ioco-conforms to s iff

• if i produces output x after trace σ, then s can produce x after σ
• if i cannot produce any output after trace σ, then s cannot produce any output after σ

(quiescence δ)

• Test generation algorithm: apply the following steps recursively, non-
deterministically:
• Terminate with pass
• Give a next input to the IUT
• Check the next output of the IUT

• If it is executed infinitely long, a complete test suite is obtained, but it is not finite
• If it yields a finite test suite its fault coverage is unknown
• Most of the existing work is on test purpose-based test generation and

not on fault coverage
• Variety of ioco-like relations retaining its main features

82

The Use of IOCO for Testing is Problematic
For general type of IOTS tests for this relation need to block outputs,
may not be sound and controllable

!cf = coffee

!es = espresso

?cn = coin

d = quiescence

?cn

?cn

!es

Test Purpose

?cn

?cn

!es

Synchronous Test

passfail

!cf d

fail

!cf

pass

IOCO-based test blocks outputs

according to version 1996

and TGV
83

To Block or Not to Block, That is the Question

We define input-output transition systems to model systems with inputs
and outputs, in which outputs are initiated by the system and never
refused by the environment, and inputs are initiated by the system’s
environment and never refused by the system, see
Tretmans,"Model based testing with labelled transition systems", 2008

• TGV, TorX, SpecEx, UPPAAL/TRON rely on blocking?

84

85

Example of Uncontrollable Tests

!cf = coffee

!es = espresso

?cn = coin

d = quiescence

?cn

?cn

!es

passfail

!cf d

fail

IOCO-based test

according to version 2008

is input-enabled

(SpecEx, but not TGV)

!cf !es

pass fail

Input Enabledness of Test Cases?

• Contradicts to
• We will not allow test cases with a choice between input and output nor a

choice between inputs [1996]

• A test case is controllable if no choice is allowed between input and output or
between inputs [TGV, FSM]

• If outputs cannot be blocked/preempted they could be stored in
queues

• It is queued or asynchronous testing

86

87

Example of Unsound Tests

!cf = coffee

!es = espresso

?cn = coin

d = quiescence

?cn

?cn

!es

Unsound Asynchronous Test

passfail

!cf d

fail

Unsoundness is due to distortion

in observing outputs via queue

iocof, ioconf, mioco, rtioco, iocor, sioco, hioco,
..., altsim

88

Asynchronous Testing for Output Faults

• Huo & Petrenko, “Transition Covering Tests for Systems with Queues”,
STVR 2009

• Hierons, “Implementation Relations for Testing Through
Asynchronous Channels”, 2012

L2

L2

L1

L1

QI

b2

b2

b2

QI

QO'

b2

I

b2

b2

b2

I

I'

b2

b2

b2

I'

O'

b2

O

b2

I

b2

b2

b2

I

O{d}

b2

Q(Imp)

Q(Imp)d

Imp'

b2

b2

b2

Test

b2

b2

b2

b1

b1

b1

b1

89

90

Mealy IOTS
Without I/O conflicts, both models have the same behaviour

IOTS is then a Mealy IOTS

All the FSM methods generating complete tests are fully applicable

Coin Button Kick

Lamp Espresso Idle

1

coin/lampbutton/

espresso

button/idle

kick/idle

coin/idle

kick/idle

Finite State Machine

1

coin kick

espresso

button kick

idle

idle button

lump

coin

Input/Output Transition System

Input-eager IOTS

• Assume that each implementation IOTS when it is state with the
input/output conflict, it does not produce any output if its input queue
contains an input. We call such IOTS input-eager

• Fault model is (Specification, Conformance Relation, Fault Domain)
• IOTS with n input states
• IOCO
• The set of all input-eager IOTSs with at most n input states

• n-complete test suite can be generated by constructing test fragments
similar to those for NFSM

• Simao & Petrenko, “Generating Complete and Finite Test Suite for ioco: Is It
Possible?”, MBT 2014

91

92

Example of Sound Tests for Input-eager IOTS

!cf = coffee

!es = espresso

?cn = coin

d = quiescence

?cn

?cn

!es

passfail

!cf d

fail

?cn

d

!es

pass fail

!cf d

fail

!cf

!es

fail

?cn

fail

Complete Test Generation for IOTS Needs
More Research
• Asynchronous testing for faults other than output faults?

• IOTS needs to be minimal to adopt state identification approaches,
how to minimize it?

• M-complete test generation for general type of IOTS?

• Mutation machine for IOTS?

• Any way of dealing with I/O conflicts other than assuming input-
eagerness or using queues?

• IOTS with extensions?

93

The Quest for the Holy Grail Goes On

94

