
Fault Model-Based Testing 
from State-Oriented Models

Alexandre Petrenko

Computer Research Institute of Montreal (CRIM), Canada

HSST 2016, Halmstadt, Sweden



To Model or Not to Model, That is the Question

Testers become test modellers “Palais Idéal” is still built by many 
without any modelling
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Given Test Model, What To Cover By Tests?

• Usual model/specification coverage
• Executions

• Structural elements

• Testing can be used to show the presence of bugs, 
but never to show their absence [Dijkstra]

• Yet can testing at least guarantee that 
no bugs of a predefined type are left? 

• To achieve this fault models are needed

• Model coverage is not fault coverage
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General Fault Model for Testing
(Specification, Conformance Relation, Fault Domain)

• Specification is a state-oriented model: Finite State Machine (FSM) or 
Input Output Transition System (IOTS)

• Fault domain is a set of Implementations Under Test (IUT) treated as 
black box and modelled by FSM or IOTS, 
it formalizes test assumptions

• Conformance relation is defined as a relation on FSM or IOTS

IUT

Tester

Spec

verdict: does 

IUT conform to Spec?
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Complete Test Suite for Fault Model

• Test suite is sound if no conforming IUT from a given fault domain fails it

• Test suite is exhaustive if each nonconforming IUT from a given fault 
domain fails it

• Test suite is complete for a given fault model 
if it is both, sound and exhaustive

• Since life is short, complete test suite must be finite

• The first complete test suites called checking experiments have been 
studied since 1960s (model-based testing has started!)
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Test Completeness and Fault Coverage
Complete test suite provides a full fault coverage 
within a given fault domain

a smaller fault domain usually requires a shorter complete test

Conformance 

relation

Nonconforming 

implementations

Fault domain

Conforming 

implementations



The Holy Grail for Fault Model-based Testing
A method which given an instance of a fault model

generates a minimal complete test suite 
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Tutorial Aims at Explaining

•Diversity of FSM and IOTS models used 
for fault model-based testing

•Variety of fault models

•Basic ideas of constructing complete test suites for 
some fault models
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Finite State Machines
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Typical Finite State Machine

Inputs: coin, button, hit

Outputs: lamp, espresso, idle

States: 1 (wait for coin), 2 (wait for button)

button/idle
hit/idle

coin/idle
hit/idle

1

2

button/
espresso

coin/lamp

atomic 
actions

coin 
button

hit

lamp
espresso

idle
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Specification FSM A = (S, s0, X, Y, d, l)

S - finite set of states, s0 is initial state

X - finite set of inputs

Y - finite set of outputs

d: S  X  S - transition function

l: S  X  Y - output function

Mealy machine

FSM can be viewed as a Finite Automaton 

• each state is final (accepting)

• input-output pair is a symbol



Equivalence Relation

• Aka trace equivalence

• Let A = (S, s0, X, Y, δ, λ) 

• States s and s are equivalent if for each input sequence α  X* it holds 
that λ(s, α) = λ(s, α)

• States s and s are distinguishable if there exists input sequence α  X*
such that λ(s, α)  λ(s, α); α is distinguishing sequence for s and s

• The length of a distinguishing sequence for two states in (completely 
specified) FSM does not need to exceed the number of states

• A is reduced (minimal) if it has no equivalent states

• Each completely specified FSM has a unique reduced form
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Conformance Relation for Mealy Machines

• Conformance relation is equivalence

• Conforming IUT is modelled by a machine equivalent to the 
specification machine

• For each nonconforming IUT there exists an input sequence 
distinguishing it from the specification machine; this is a test on 
which it fails
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Faults in FSM Implementations

• Faults are modelled as mutants of a specification machine forming a 
fault domain 

• Mutations mimic the implementation process

• Initialization fault – wrong initial state

• Output fault - wrong output of transition

• Transfer fault - wrong end state of transition
• Creating additional states
• Reducing or maintaining the number of states

• Transition fault - wrong output or end state of transition

• Mutants can have multiple faults (high order mutants)
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Mutation Testing with FSM

• Mutation testing is suggested first in 1964 for FSM; each mutant 
models specific type of hardware faults (stuck-at 0, 1) 

• It predates software mutation testing

• Tests are obtained by mutant killing

1

2

coin/lamp
button/
espresso

button/idle
hit/idle

coin/idle
hit/idle

1

2

coin/lamp
hit/idle

button/
espresso

button/idle

coin/idle
hit/idle
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Mutant Killing

Test hit.button kills the mutant

1

2

coin/lamp
button/
espresso

button/idle
hit/idle

coin/idle
hit/idle

1

2

coin/lamp
hit/idle

button/
espresso

button/idle

coin/idle
hit/idle
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FSM Mutant Killing

Spec and mutant IUT

IUT

no

SpecIUT

Spec

equal outputs?

This is FSM product
used, e.g., for 
verification purposes

test



Mutant Killing with FSM Product Equipped 
with Fail State

All ests distinguishing Mutant and Spec
are given by the paths to the fail-state
bba, bbbba and so on. b{bb}*ba
If the product has no fail-state, the mutant conforms to Spec

b/1 0 1 2
a/0 a/0

a/0
a/0 p r q

b/1 b/1

b/1
a/0

FSM Spec FSM Mutant

a/1

a/0

0p

0r

1p

a/0

b/1

2p

fail0q

b/1

b/1

1r 2r

a/0

a/0
a/0

a/0

SpecMutant

a/?
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General Fault Domain

• A set of mutants each modelling a particular test assumption 

• A general fault domain is the universe of all machines with a predefined 
maximal number of states m

• The number of all Mealy machines with m states, p inputs, o outputs is 

(mo)mp

• Test assumption is that anything may go wrong, i.e., all transition faults, 
but the number of states in IUT does not exceed a chosen limit m

• Complete test suites for this fault domain are traditionally called checking 
experiments, aka m-complete test suites
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Deriving Complete Test Suite for Enumerated Mutants 

Fault domain is a list of arbitrary mutants

Step 1. For each mutant in a fault domain 

• Construct the product

• Determine one or several tests killing the mutant

Step 2. Determine a minimal number of tests killing all mutants by 

solving a set cover problem 

• More mutants need more tests

• Mutant enumeration can be avoided following the state 

identification approach (checking experiment)



State Identification 
(Complete Tests for Initialization Faults)
• Fault domain is a set of mutants, each mutant is an instance of the 

specification machine A = (S, s0, X, Y, δ, λ) initialized in a different 
state, i.e., Mi = (S, si, X, Y, δ, λ), si  s0

• The number of mutants is n – 1, where n is the number of states in 
the specification machine

• A complete test suite W(s0) is a set of input sequences distinguishing 
s0 from all the other states 

• W(s0) is a state identification experiment for state s0 or simply 
state identifier for s0
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Variety of State Identifiers

• Let W(s0), …, W(sn-1) be state identifiers for A = (S, s0, X, Y, δ, λ)

• If W(s0) = …= W(sn-1) = W then W is a characterization set of A

• If W(si) is a singleton then it is called a UIO sequence of si
it provides an output signature of the state

• If a sequence is an UIO of all the states then it is a distinguishing sequence of A

• Family of Harmonized State Identifiers (HSI) {W(s0), …, W(sn-1)} such that in 
each pair of state identifiers W(s) and W(s) there exist two sequences with a 
common prefix α, such that λ(s, α)  λ(s, α)
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Example 

s1

s2 s3

a/o

a/o a/1

b/1b/1

b/0

W(s1) = b is UIO

W(s3) = a is UIO

W(s2) = {a, b}, s2 has no UIO sequence

{a, b} is a characterization set of A

A has no distinguishing sequence:

If we take a then states s1 and s2 are no 
longer distinguishable

If we take b then states s2 and s3 are no 
longer distinguishable

a b

s1 s1/0 s3/0

s2 s1/0 s2/1

s3 s3/1 s2/1

A
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Distinguishing Sequence for FSM

2

41

5

3

a/0

a/1

a/1

a/0

a/0

b/1

b/0

b/0

b/1

b/1

a b a

1 0 1 0

2 0 1 1

3 1 0 1

4 0 0 1

5 1 1 0

aba is a distinguishing sequence for AA

Output sequences 
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Example of Harmonized State Identifiers

2

41

5

3

a/0

a/1

a/1

a/0

a/0

b/1

b/0

b/0

b/1

b/1

A W = {aba}
W(1) = {aba}
W(2) = {aba}
W(3) = {ab}
W(4) = {ab}
W(5) = {ab}

Family of Harmonized State Identifiers {W(1), W(2), W(3), W(4), W(5)}

a b a

1 0 1 0

2 0 1 1

3 1 0 1

4 0 0 1

5 1 1 0

Output sequences 
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What Are State Identifiers For?

• Used by various methods which generate complete test suites for Mealy 
machines

• Characterization sets in the W-method 
(Vasilevskiy, 1973; Chow 1978, improved by Bochmann et al 1991, Wp-
method)

• Distinguishing sequences in the DS-method
(Hennie 1964; continuously being improved)

• UIO sequences in the UIOv-method
(Vuong, 1989)

• Harmonized State Identifiers in the HSI-method
(Petrenko & Yevtushenko, 1990; later H and SPY methods) 
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M-Complete Test Suite

• Fault model is (Specification, Conformance Relation, Fault Domain)

• Specification is a reduced Mealy machine A = (S, s0, X, Y, δ, λ), |S| = n

• Conformance relation is equivalence

• Fault domain is the universe of all machines with a predefined maximal 
number of states m
• Fault do not increase the number of states, m = n = |S|

• Faults may increase the number of states, m  n = |S|

• Test suite complete for such a fault model is called m-complete test suite

27



The Basic Idea of Constructing M-Complete 
Test Suites For FSM
• Reach every state in any IUT from the fault domain

• Check each reached state using some state identifiers built from the 
specification FSM

• Execute all transitions from each reached state 

• Check the end state of each transition using the same state identifiers

• Corresponding test fragments are
• transfer sequences to reach states in the specification FSM
• sets of sequences extending the transfer sequences to execute all transitions 

from IUT states 
• state identifiers
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W-method for N-complete Test Suite
• A = (S, s0, X, Y, δ, λ) with n states

• Determine a single transfer sequence for each state, obtaining a state 
cover V = {α0, …, αn-1}, where α0 = , empty sequence; 

• Determine a transition cover by adding each input to every transfer 
sequence in the state cover VX = {αix| αi  V, x  X}

• Construct a characterization set W

• Concatenate sets V  VX and W to obtain an n-complete test suite

(V  VX)W = {α| α  (V  VX),   W}
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button identifies the states, it is a DS

so is coin, but it is more expensive 

1

121

button      coin     kick

221

button       coin     kick

button button button

button button

1

2

coin/lamp
button/

espresso

button/idle

kick/idle

coin/idle

kick/idle

Example with W-method, I



Example with W-method, II

2

41

5

3

a/0

a/1

a/1

a/0

a/0

b/1

b/0

b/0

b/1

b/1

State Cover V = {, a, aa, aab, aaba}

Transition Cover VX = {, a, aa, aab, 
aaba}{a, b} = {a, aa, aaa, aaba, aabaa, b, 
ab, aab, aabb, aabab}

Choose, e.g., W = {aba}

(V  VX)W = {, a, aa, aab, aaba, aaa, aabaa, b, ab, aabb, aabab}{aba} = 
{aba, aaba, aaaba, aababa, aabaaba, aaaaba, aabaaaba, baba, ababa, 
aabbaba, aabababa} 31



W-method for M-Complete Test Suite
• Fault domain is the universe of all machines with a predefined 

maximal number of states m, fault may increase the number of states, 
m  n = |S|

• The number of additional states in IUT can reach m - n; any additional 
state can be reached by an state cover extended with all input 
sequences of length at most m – n in the set X(m - n)

• Transition cover then becomes VX(m - n)X = VX(m – n+1)

• M-complete test suite is then 

VX(m – n+1)W
• N-complete test suite is a special case of m-complete test suite

VX1W
32



HSI-method

• It uses a family of harmonized state identifiers 
F = {W(s0), …, W(sn-1)} instead of a single characterization set 

VX(m – n+1)@F = 
{α| α  VX(m – n+1),   W(d(s0, α)), W(d(s0, α))  F}

• This method allows to define state identifiers for partially specified FSMs 
which may not have any characterization set 
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Example with HSI-method

HSI: W(1) = W(2) = {aba} 
W(3) =  W(4) = W(5) = {ab}

2

41

5

3

a/0

a/1

a/1

a/0

a/0

b/1

b/0

b/0

b/1

b/1

State Cover V = {, a, aa, aab, aaba}

Transition Cover VX = {, a, aa, aab, 
aaba}{a, b} = {a, aa, aaa, aaba, aabaa, b, 
ab, aab, aabb, aabab}

The resulting n-complete test suite is shorter than the one of W-method, since 
the latter always concatenates aba, while now its prefixes are used
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How Complex are Complete Tests for CFSM?

• Given FSM with n states, any two non-equivalent states can already be 
distinguished by at most n-1 inputs

• We need no more than n-1 input sequences to obtain a characterization 
set/HSI

• The length of n-complete test is at most pn3, where p is the number of inputs

• The length of m-complete test is exponential pm-n+1n3, m  n
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Mealy Machine is Completely Specified

• A = (S, s0, X, Y, d, l)
S - finite set of states, s0 is initial state

X - finite set of inputs

Y - finite set of outputs

d: S  X  S - transition function

l: S  X  Y - output function

• There are partially specified (partial) machines 
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FSM Redefined

• FSM A = (S, s0, X, Y, D, d, l)
S - finite set of states, s0 is initial state

X - finite set of inputs

Y - finite set of outputs

D  (S  X) - specification domain

d: D  S - transition function

l: D  Y - output function

Complete FSM if D = S  X; partial FSM (PFSM) if D  (S  X)

Acceptable input sequences in X* traverse defined transitions

A(s) denote the set of all acceptable input sequences for state s



Example 

1

2

coin/lamp
button/
espresso

Partial FSM

button/idle
hit/idle

coin/idle
hit/idle

1

2

button/
espresso

coin/lamp

Acceptable sequences – (coin.button)* 
It is a partial test model, but FSM 
implementations are completely specified

coin 
button

hit

lamp
espresso

idle
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How Missing Transitions Can Be Treated?
The behavior is not specified for some states and inputs, i.e., some 
transitions are missing

• Implicitly defined transitions 
• self-loops with the output “null/idle”, inputs are ignored (angelic completion)
• Transitions lead to a sink state with the output “error”

• Undefined by default transitions, i.e., don’t care transitions lead to a 
chaos sink state with all outputs (demonic completion)

• Forbidden transitions
• The environment cannot provide certain input sequences, e.g., testing via context 

(see slides later)
• Certain tests are not allowed (Chernobyl) 
• Input variables can change only one at a time
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Example 
button/idle
hit/idle

coin/idle
hit/idle

1

2

button/
espresso

coin/lamp

1

2

coin/lamp
button/
espresso

Partial FSM

Implicitly defined transitions

coin, hit/error 

1

2

button/
espresso

coin/lamp

button, hit/error

coin, button, hit/error
coin, hit/
lamp, espresso, idle 

1

2

button/
espresso

coin/lamp

button, hit/lamp, espresso, idle

coin, button, hit/
lamp, espresso, idle

Undefined by default transitions

coin 
button

hit

lamp
espresso

idle
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Testing from Partial FSM 

• Input enableness is usually assumed for implementations

• Following a chosen completeness assumption implicitly defined and 
undefined by default transitions become explicitly defined and a 
partial FSM is sometimes replaced for testing by a complete FSM

• Do we actually know how PFSM was completed in IUT?

• Partial FSM with forbidden transitions cannot be replaced by any 
complete FSM

• The equivalence conformance relation needs to be weakened and 
fault models adapted
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PFSM Relations 
• A = (S, s0, X, Y, D, δ, λ) 

• States s and s are compatible if each input sequence acceptable in both states 
produces the same output sequence 
A(s) A(t) =  or λ(s, α) = λ(s, α) for all α  A(s) A(s)

• s is quasi-equivalent to s if they are compatible and sequences acceptable in s 
are also acceptable in s
λ(s, α) = λ(s, α) for all α A(s) and A(s) A(s)

• States s and s are distinguishable if there exists α  A(s) A(s) such that 
λ(s, α)  λ(s, α)

• The length of a distinguishing sequence for two states does not need to 
exceed “n choose 2” = n(n-1)/2; cf. n for complete FSM

• A is reduced if it has no compatible states

• Compatibility is not transitive so partial FSM can have several reduced forms 
as opposed to complete FSM
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Upper Bound for Distinguishing Sequences in PFSM
Determining a sequence distinguishing states 1 and 2

The bound “n choose 2” is tight

/0



M-Complete Test Suite for PFSM

• Fault model is (Specification, Conformance Relation, Fault Domain)

• Specification is a partial not necessarily reduced FSM 
A = (S, s0, X, Y, D, δ, λ)

• Conformance relation is quasi-equivalence, 
since all IUTs are complete machines

• Fault domain is the universe of all complete machines 
with a predefined maximal number of states m

• The bound m cannot be lower than the number of pairwise 
distinguishable states in A which can be smaller than n = |S|
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Building m-Complete Test Suite for PFSM

• State identification approach fails because of compatible states

• State-Counting approach (Petrenko & Yevtushenko, 1989, 2000) 
generalizes the state identification approach

• The idea is based on the above example:
determine all acceptable input sequences from each state such that 
each state of the specification is traversed at least m times

• The value of m can be reduced if the specification has 
• quasi-equivalent or 

• distinguishable states, so state distinguishing sequences can be employed 
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Mealy Machine is Deterministic

• A = (S, s0, X, Y, d, l)
S - finite set of states, s0 is initial state

X - finite set of inputs

Y - finite set of outputs

d: S  X  S - transition function

l: S  X  Y - output function

• There are nondeterministic machines



FSM Redefined Again
A = (S, s0, X, Y, T)

S - finite set of states, s0 is the initial state

X - finite set of inputs

Y - finite set of outputs

T - transition relation T  S  X  Y  S
quadruple (s, x, y, s’)  T is a transition

A is complete if for each (s, x)  S  X it has at least one transition

deterministic if for each (s, x)  S  X it has at most one transition

nondeterministic if for some (s, x)  S  X it has several transitions

observable if for each (s, x, y)  S  X  Y it has at most one transition; 
non-observable FSM can be made observable by determinization
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Is Nondeterminism Really a Problem in Testing?
• Nondeterminism contradicts the general feeling that 

computer systems are deterministic, so we might wonder 
whether there is any real meaning to use the term 
nondeterminism, or whether it is a useful, but essentially 
meaningless, formal trick (A. J. Dix, 1990)

• It is a good practice to design systems for testability, and one 
important aspect of testability is that you can reproduce test results 
many times, and this implies that the system should be as deterministic 
as possible. The issue of testing nondeterministic systems is therefore, 
albeit real, relatively minor at least in the current practice
(A. Huima, 2011)
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Various Sources of Nondeterminism

• Concurrency modelled by interleavings

• Abstractions, under-specification (undefined by default transitions), 
options, uncertainty

• Asynchronous communication, unknown delays 

• Partial controllability

• Partial observability

• Distributed interfaces: the actual order of events is unknown

• Random choice implemented in some applications

49



NFSM Example 

1

2

coin/lamp
button/
espresso

button/idle
hit/idle

coin/idle
hit/idle

hit/lamp

in Implementations!coin/espresso

in Spec!
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Testing NFSM is a Challenge

• In NFSM input sequence can produce several output sequences and bring 
the machine into different states

• Two main test scenarios
• Specification is nondeterministic, but IUT is deterministic

• Both, specification and IUT, are nondeterministic

• Testing nondeterministic IUT requires some fairness/all weather 
assumption: 
there exists k such that, if input sequence is applied to IUT k times, 
the tester concludes that all possible output sequences are observed

• Testing becomes adaptive, so tests are also NFSM as opposed to DFSM tests 
which are input sequences
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NFSM Relations

• FSM A = (S, s0, X, Y, T)
• States s and s are (trace) equivalent if their sets of traces coincide, i.e., 

Tr(s) = Tr(s)
• s and s are distinguishable if Tr(s)  Tr(s), there exists input sequence

α  X* such that out(s, α)  out(s, α)
α is distinguishing sequence for s and s

• s is a reduction of s if Tr(s)  Tr(s), trace inclusion
• s and sare r-compatible, if they have a common reduction, i.e., 

there exists a state of a complete FSM that is a reduction of both states
• s and s are r-distinguishable, if they have no common reduction, i.e., 

no state of any complete FSM can be a reduction of both states
• several input sequences may be needed
• the bound is n2
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a/0

Example of R-distinguishability

1 2

4

c/1

a/1

a,c/1

a,c/0

c/1

c/1a/1

b/0

a/0

3

b/0

a/0 b/1

b/1

a/0

b/1

1

13
a/1

b/0

a/1

32

3

24

a/0

b/? a/?

a/0

13
a/1

c/1

b/1

32 24

c/1

44

c/1

22

Specification NFSM       Fragment of the product  Adaptive test r-distinguishing
for states 1 and 3                    states 1 and 3

Adaptive tests r-distinguishing states are called separators

b/0

53



Fault Models for NFSM
• Fault model is (Specification, Conformance Relation, Fault Domain)

• Specification is NFSM A = (S, s0, X, Y, T)

• Case 1
• Fault domain is the universe of all NFSMs with a predefined maximal number of 

states m
• Conformance relation is trace equivalence

• Case 2
• Fault domain is the universe of all NFSMs with a predefined maximal number of 

states m
• Conformance relation is trace inclusion

• Case 3
• Fault domain is the universe of all DFSMs with a predefined maximal number of 

states m
• Conformance relation is trace inclusion 
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M-Complete Test Suite for NFSM and 
Equivalence Relation
• Fault model is (Specification, Conformance Relation, Fault Domain)

• Specification is a reduced NFSM A = (S, s0, X, Y, T)

• Conformance relation is trace equivalence 

• Fault domain is the universe of all NFSMs with a predefined maximal 
number of states m

• M-complete test suite can be obtained 
by mimicking steps of the W-method for DFSM

VX(m–n+1)W
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Fault Model for NFSM and Reduction Relation

• Fault model is (Specification, Conformance Relation, Fault Domain)

• Specification is an NFSM A = (S, s0, X, Y, T)

• Conformance relation is reduction 

• Fault domain is the universe of all NFSMs and DFSMs with a 
predefined maximal number of states m, not less than the number of 
pairwise r-distinguishable states

• Multiple test execution only if the fault domain includes NFSMs

• Characterization set W for the equivalence relation cannot be used, 
separators play its role
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Recall the Basic Idea of Constructing 
m-Complete Test Suites
• Reach every state in any IUT from the fault domain

• Check the reached state using some state identifiers

• Execute all transitions from each reached state 

• Check the end state of each transition using the same state identifiers

• Fragments of complete test suite 
• transfer sequences to reach states in the specification FSM

• sets of sequences extending the transfer sequences to execute all transitions 
from IUT states 

• state identifiers
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Challenges of Constructing Transfer Sequences 

• Transfer sequences to reach states in the specification FSM if it is 
nondeterministic?

• State reachability for NFSM 

• Reachable by preset transfer input sequence (deterministically reachable)

• Reachable by adaptive tests, i.e., adaptive preambles (definitely reachable)

• No adaptive homing test exists

• Some states of NFSM A = (S, s0, X, Y, T) may not even be implemented 
in an IUT conforming  wrt reduction relation, since it is allowed not to 
have all the traces of A
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State Preamble Example 

a/0

1

a/1

3
a/0

4

a/1

b/1

2

1 2

4

c/1

a/1

a,c/1

a,c/0

c/1

c/1a/1

b/0

3

b/0

a/0 b/1

b/1

a/0

How state 2 can be reached?

Here is a preamble
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Building m-Complete Test Suite For NFSM

• Preambles are used to reach definitely reachable states

• Traversal sequences are determined as in case of partial DFSM, such 
that each state of the specification is traversed no more than m times

• The parameter m can be reduced if the specification has 
• r-compatible states or
• r-distinguishable states

• State separators used for state identifiers

The SC-method by Petrenko & Yevtushenko 
(recent versions in 2011 and 2014)
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M-Complete Test Suites Come at a Price

• Scalability and expressiveness
• M-complete tests may explode

• All the ingredients of the FSM model are finite, as a result such a model without 
extensions may become to be too big to construct and execute tests 

• FSM model does not support the use of variables/parameters

• How we can deal with this
• Generate tests incrementally 

• Use communicating FSMs

• Use mutation machines to specify fault domains 
as subsets of the universe of all FSMs

• Consider extended FSM models
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Incremental Generation of Complete Test Suite

• The idea is to find sufficient conditions for p-completeness

• Given a test suite determine additional tests which satisfy these 
conditions

• Increment p and iterate until the desired value is reached or the 
size of the obtained test suite reaches a predefined limit

• See the P-method, see Petrenko & Simao, “Fault Coverage-
Driven Incremental Test Generation”, 2009
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M-Complete Test Suites Come at a Price

How to deal with this
• Generate tests incrementally 

• Use communicating FSMs

• Use mutation machines to specify fault domains 
as subsets of the universe of all FSMs

• Consider extended FSM models
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Testing Communicating FSMs

• Given a system of ComFSM, derive a (complete) test suite 
using external inputs and outputs 

• Variety of testing scenarios
• faults in individual FSMs or in channels

• some FSMs are fault-free

• internal actions are observable or not

• distributed testing with synchronized testers
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Example of Communicating FSMs

Lamp
Espresso
Idle

Coin 
Button
Hit

Espresso-please
Money

Espresso-served
Thanks
Sorry

1

2

C/LB/E

B/I

H/I

C/I

H/I

c

b d

a M/T

I/H

Ep/C

E/Es
L/B

E/EsL/H

I/S

Machine                         Waiter                                  Global FSM

Ep/S Ep/S

M/T

Ep/Es

M/T

A B

M/T

Ep/S



M-Complete Test Suites Come at a Price

How to deal with this
• Generate tests incrementally 

• Use communicating FSMs

• Use mutation machines to specify fault domains 
as subsets of the universe of all FSMs

• Consider extended FSM models
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Using Mutation Machines to Specify 
Fault Domains 

1 2 3

4

a/0

b/0

a/1
b/0

b/0

a/0

a/0
b/0

1 2 3

4

I/O

I/O

I/O
I/O

I/O

I/O

I/O
I/O

I/O = {x/y | x  X, y  Y}

Chaos FSM, which represents all possible mutants in the fault domain with at most 4 states
It is called a mutation machine, each deterministic submachine is a mutant
Their number is (|S|  |O|)|S|  |I| = (42)42 = 16,777,216
4-complete test suite for this fault model kills all the mutants

I/O
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Example of Restricted Fault Domain

1 2 3

4

a/0

b/0

a/1
b/0

b/0

a/0

a/0
b/0

1 2 3

4

a/0

b/0

a/1
b/0

b/0

a/0

a/0
b/0

a/1

a/1

b/0

The mutation machine has 6 suspicious transitions in red
3 mutated transitions in dash lines (output fault and two transition faults 
The fault domain includes 8 deterministic submachines, so 7 mutants
they can be enumerated as in mutation testing
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Testing Based on Mutation Machines 

• Fault model is (Specification, Conformance Relation, Fault Domain)
• Specification is a DFSM A = (S, s0, X, Y, δ, λ)
• Conformance relation is equivalence
• Fault domain is the set of all deterministic submachines of A
• Test generation methods using state identification facilities can be adopted 

to deal with non-chaotic mutation machines
• See our papers co-authored with Koufareva, Yevtushenko and Grunskiy

• Test completeness can be checked for this fault model
• The idea is to use again an FSM product
• See our paper “Multiple Mutation Testing from FSM”, FORTE 2016
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Distinguishing Automaton

1 2 3

4

a/0

b/0

a/1
b/0

b/0

a/0

a/0
b/0

1 2 3

4

a/0

b/0

a/1
b/0

b/0

a/0

a/0
b/0

a/1

a/1

b/0

Specification FSM

Mutation FSM
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Mutation Coverage Analysis
The idea is to determine constraints on transitions in all the mutants 
killed by a test case 

Example: baaba

two revealing executions

Any mutant Is killed by the test baaba if it includes suspicious 
transitions (3, a, 1, 3) OR ((3, a, 0, 3) AND (3, b, 0, 3) AND (3, a, 0, 3))
The negated constraint characterizes the survived mutants

1 2 3

4

a/0

b/0

a/1
b/0

b/0

a/0

a/0
b/0

a/1

a/1

b/0
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Checking Test Completeness for a Given Fault Model

Input: a test suite TS for a specification and mutation machine

1. For each a  TS, build the disjunction of constraints excluding 
the a-revealing executions

2. Build the conjunction of the obtained disjunctions and add the constraint 
that excludes the solution defining the specification machine

3. Check the satisfiability of the constraint by calling a solver 

4. If it is not satisfiable terminate with the message “TS is complete”, 
otherwise check whether the mutant defined by a solution is conforming

5. If it is nonconforming terminate with the message “TS is incomplete”, 
otherwise add the constraint that excludes the conforming mutant and go 
to Step 3
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Experimental Results for Randomly Generated 
Mutation Machines

73

Mhvac M+20 M+100 M+428 M+764

Mut. Trans. 46 66 146 474 810

Mutants 6.91010 5.51016 3.11038 2.210108 3.910163

Tests 36 55 140 369 1111

Sec. 3 7 24 86 1013

A specification for an automotive controller with 336 transitions



M-Complete Test Suites Come at a Price

How to deal with this
• Generate tests incrementally 

• Use communicating FSMs

• Use mutation machines to specify fault domains 
as subsets of the universe of all FSMs

• Consider extended FSM models

74



Extended FSM Models
• FSM can be extended with variables, parameters, guards and operations on 

them (time can also be added)

• Once internal variables are used the number of complete states may 
become unbounded, so FSM methods are not applicable

• Fault model-based testing of extended FSMs (EFSMs) has not yet reached 
the level of maturity of that of the classical FSMs

• Mutation approach with mutation operations is applicable

• EFSM equivalence is in general undecidable

• This motivates investigation of special classes of EFSMs for which complete 
test suites could be derived (FSM with Symbolic Inputs, see our paper in 
ICTSS 2015)
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Complete Test Generation for FSM Needs 
More Research
• M-complete test suite for partial non-observable NFSM?

• Complete test suites using mutation machines?

• Complete test suites for an arbitrary fault model?

• General types of Extended FSM?
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Input/Output Transition Systems
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Outline

• Informal discussion of IOTS 

• For formal definitions and ioco based testing theory, 
see the HSST 2014 tutorial, Tretmans, “Model-Based Testing - There is 
Nothing More Practical than a Good Theory”

• The ioco conformance relation and problems of using it

• Asynchronous testing

• Special IOTS classes for which complete test suites are suggested
• Mealy IOTS

• Input-eager IOTS 
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Labeled Transition Systems

• Difference between inputs and outputs is abstracted away
• LTS is a finite automaton, every state is accepting
• LTS communicate by rendezvous
• Actions are controllable, “refusal” is observed

• Several refusal-based conformance relations and test methods exist, see 
Glabbeek, “The linear time-branching time spectrum”, 1990

s
a

{b,c,d}/refusal

s s
a/a

s
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Example of Input/Output Transition System

coin

coffee

milk

?coin

!coffee !milk

?coin

?coin

?coin

?coin



State is quiescent if no output is enabled Its observation needs timer

Inputs may occur at states that are not quiescent

Rich choice of conformance relations which use traces, quiescent traces, 

suspension traces



Input Enableness of IOTS

• IOTS is LTS with Input-Output and always enabled inputs  

• I/O automaton, interface automaton

• Interpretation of unspecified transitions similar to partial FSM
• Implicitly defined transitions: inputs lead to a sink state with the output 

“error”

• Undefined by default transitions: don’t care transitions lead to a chaos sink 
state with all outputs (demonic completion)

• Forbidden transitions: the environment cannot provide some input sequences
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IOCO Relation and Test Generation
• i ioco-conforms to s iff

• if i produces output x after trace σ, then s can produce x after σ 
• if i cannot produce any output after trace σ, then s cannot produce any output after σ

(quiescence δ)

• Test generation algorithm: apply the following steps recursively, non-
deterministically:
• Terminate with pass
• Give a next input to the IUT
• Check the next output of the IUT

• If it is executed infinitely long, a complete test suite is obtained, but it is not finite
• If it yields a finite test suite its fault coverage is unknown
• Most of the existing work is on test purpose-based test generation and 

not on fault coverage
• Variety of ioco-like relations retaining its main features
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The Use of IOCO for Testing is Problematic
For general type of IOTS tests for this relation need to block outputs, 
may not be sound and controllable 

!cf = coffee

!es = espresso

?cn = coin

d = quiescence

?cn

?cn

!es

Test Purpose

?cn

?cn

!es

Synchronous Test

passfail

!cf d

fail

!cf

pass

IOCO-based test blocks outputs

according to version 1996

and TGV
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To Block or Not to Block, That is the Question

We define input-output transition systems to model systems with inputs 
and outputs, in which outputs are initiated by the system and never 
refused by the environment, and inputs are initiated by the system’s 
environment and never refused by the system, see 
Tretmans,"Model based testing with labelled transition systems", 2008

• TGV, TorX, SpecEx, UPPAAL/TRON rely on blocking?
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Example of Uncontrollable Tests

!cf = coffee

!es = espresso

?cn = coin

d = quiescence

?cn

?cn

!es

passfail

!cf d

fail

IOCO-based test

according to version 2008

is input-enabled

(SpecEx, but not TGV)

!cf !es

pass fail



Input Enabledness of Test Cases?

• Contradicts to
• We will not allow test cases with a choice between input and output nor a 

choice between inputs [1996]

• A test case is controllable if no choice is allowed between input and output or 
between inputs [TGV, FSM]

• If outputs cannot be blocked/preempted they could be stored in 
queues

• It is queued or asynchronous testing
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Example of Unsound Tests

!cf = coffee

!es = espresso

?cn = coin

d = quiescence

?cn

?cn

!es

Unsound Asynchronous Test

passfail

!cf d

fail

Unsoundness is due to distortion

in observing outputs via queue 



iocof, ioconf, mioco, rtioco, iocor, sioco, hioco, 
..., altsim
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Asynchronous Testing for Output Faults

• Huo & Petrenko, “Transition Covering Tests for Systems with Queues”, 
STVR 2009

• Hierons, “Implementation Relations for Testing Through 
Asynchronous Channels”, 2012
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Mealy IOTS
Without I/O conflicts, both models have the same behaviour

IOTS is then a Mealy IOTS

All the FSM methods generating complete tests are fully applicable

Coin Button Kick

Lamp  Espresso  Idle 

1

coin/lampbutton/

espresso

button/idle

kick/idle

coin/idle

kick/idle

Finite State Machine

1

coin kick

espresso

button kick

idle

idle button

lump

coin

Input/Output Transition System



Input-eager IOTS

• Assume that each implementation IOTS when it is state with the 
input/output conflict, it does not produce any output if its input queue 
contains an input. We call such IOTS input-eager

• Fault model is (Specification, Conformance Relation, Fault Domain)
• IOTS with n input states
• IOCO
• The set of all input-eager IOTSs with at most n input states

• n-complete test suite can be generated by constructing test fragments 
similar to those for NFSM

• Simao & Petrenko, “Generating Complete and Finite Test Suite for ioco: Is It 
Possible?”, MBT 2014
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Example of Sound Tests for Input-eager IOTS

!cf = coffee

!es = espresso

?cn = coin

d = quiescence

?cn

?cn

!es

passfail

!cf d

fail

?cn

d

!es

pass fail

!cf d

fail

!cf

!es

fail

?cn

fail



Complete Test Generation for IOTS Needs 
More Research
• Asynchronous testing for faults other than output faults?

• IOTS needs to be minimal to adopt state identification approaches, 
how to minimize it?

• M-complete test generation for general type of IOTS?

• Mutation machine for IOTS?

• Any way of dealing with I/O conflicts other than assuming input-
eagerness or using queues?

• IOTS with extensions?
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The Quest for the Holy Grail Goes On
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