
Embedded Systems Programming - PA8001
http://goo.gl/YdEcZU

Lecture 5

Mohammad Mousavi
m.r.mousavi@hh.se

Center for Research on Embedded Systems

School of Information Science, Computer and Electrical Engineering

Real Time?

In what ways can a program be related to time in the environment
(the real time)?

Salvador Dali, The Persistence of Memory.

Real Time

An external process to . . .

I Sample: reading a clock,

I React: a handler for an interrupt clock, and

I Constraint: a deadline to respect.

Sampling the time

Requires a hardware clock (read as an external device)

Multitude of alternatives

I Units? Seconds? Milliseconds? CPU cycles?

I Since when? Program start? System boot? Jan 1, 1970?

I Real time? Time stops when: other threads are running?
when CPU sleeps? Time that cannot be set and always
increases?

Timestamps

Relative timing: prevalent in reactive systems, reactions are
relative to events

Example

Teacher left 15 min. after the start of the lecture.

In embedded programming,
time-stamping an event: reading
performed around the event
detection.

Time spans

The di↵erence between two time-stamps: a time span independent
of the nominal clock values (modulo clock resolution).

The meaning of time-stamp

I The time of some arbitrary program instruction?

I The beginning or end of a function call?

I The time of sending or receiving an asynchronous message?

Too much program dependent!

In a scheduled system

What looks like . . .

Event detected

Subsequent statements

Clock read

might very well be . . .

Event detected

Other threads running

Clock read

Close proximity is not the same as subsequent statements!

Time-stamping events

Solution: to time-stamp events that drive a system

Idea!
Read the clock in the interrupt handler detecting the event

I Disable other interrupts, hence no threads might interfere

I Tight predictable upper bound on the time-stamp error

Example

Calculate the speed

For a rotating wheel, measuring the time between two subsequent
detections of a passing tap.

Detector

Tap

typedef struct{

Object super;

int previous;

Other *client;

} Speedo;

...

Speedo speedo;

int main(){

INSTALL(&speedo, detect, SIG_XX);

return TINYTIMBER(...)

}

Example

Calculate the speed

For a rotating wheel, measuring the time between two subsequent
detections of a passing tap.

int detect(Speedo *self, int sig){

int timestamp = TCNT1;

ASYNC(self -> client,

newSpeed,

PERIMETER/DIFF(timestamp,self->previous));

self->previous=timestamp;

}

DIFF will have ot take care of timer overflows!

Real-time events to react to

So far: how to sample the real-time clock to know about time

Now: how to take action after a certain amount of time

Example

The wheel is an engine crankshaft
and we have to emit ignition
signals to each cylinder

How to postpone program execution until certain time

Reacting to real time events

Very poor man’s solution

Consume a fixed amount of CPU cycles in a (silly) loop

int i;

for(i=0;i<N;i++); // wait

do_future_action();

Problems

1. Determine N by testing!

2. N will be highly platform dependent!

3. A lot of CPU cycles will simply be wasted!

Reacting to real time events

The nearly as poor man’s solution

Configure a timer/counter with a known clock speed, and
busy-wait for a suitable time increment

unsigned int i = TCNT1+N;

while(TCNT1<i); // wait

do_future_action();

Problems

1. Determine N by calculation

2. Still a lot of wasted CPU!

Reacting to real time events

The standard solution
Use the OS to fake busy-waiting

delay(N); // wait (blocking OS call)

do_future_action();

I No platform dependency!

I No wasted CPU cycles (at the expense of a complex OS)

Still a problem . . .

. . . common to all solutions . . .

In a scheduled system

What looks like . . .

subsequent statements

call do_future_action()Event detected

delay(N)

might very well be . . .

Other threads get to run!

call do_future_action()Event detected

delay(N)

Had we known the scheduler’s choice, a smaller N had been used!

Relative delays

The problem: relative time without fixed references:

I The constructed real-time event will occur at after N units
from now.

I What is now?!

Other common OS services share this problem: sleep, usleep
and nanosleep.

We are not going to use OS services in the course.

Yet another problem

Threads and interleaving make it worse

Example

Consider a task running a CPU-heavy function do work() every
100 millisecods. The naive implementation sing delay():

while(1){

do_work();

delay(100);

}

Accumulating drift

100

XXXX

100100100

100100100100100

X is the time take to do work

Each turn takes at least 100+X milliseconds.

A drift of X milliseconds will accumulate every turn!

Accumulating drift

100

XXX

100100100

100100100100100

With threads and interleaving, the bad scenario gets worse!

Even with a known X, delay time is not predictable.

A stable reference

What we need is a stable time reference to use as a basis whenever
we specify a relative time (instead of now).

Baselines
We introduce the baseline of a message to mean the earliest time a
message is allowed to start.

Time stamps of interrupts!

The baseline of an event is its time-stamp:

Interrupt signal

Baseline: start after Actual method execution

A stable reference

SYNC
Calling methods with SYNC doesn’t change the baseline (the call
inherits the baseline)

same baseline: start after

B

SYNC(B,meth,arg)

Original event

A

Baseline: start after

A stable reference

ASYNC
By default ASYNC method calls will inherit the baseline

Pseudo parallel execution

ASYNC(B,meth,arg)

same baseline: start after

B

Original event

A

Baseline: start after

A stable reference

For ASYNC we may also consider adding a baseline o↵set N!

new baseline

N

actual time of call plays NO role in this baseline calculation!

AFTER(N,B,meth,arg)

Baseline: start after

A

Original event

B

Periodic tasks

To create a cyclic reaction, simply call self with the same method
and a new baseline:

2 seconds 2 seconds

new baseline

etc

new baseline

Baseline: start after

AFTER(SEC(2),self,meth,arg)

AFTER(SEC(2),self,meth,arg)

AFTER(SEC(2),self,meth,arg)

Original event

A

SEC is a convenient macro that makes the call independent of
current timer resolution.

Implementing AFTER

1. Let the baseline be stored in every message (as part of the
Msg structure)

2. AFTER is the same as ASYNC, but
I New baseline is

MAX(now, offset+current->baseline)

I If baseline > now , put message in a timerQ instead of
readyQ

I Set up a timer to generate an interrupt after earliest baseline
I At each timer interrupt, move first timerQ message to readyQ

and configure a new timer interrupt

In fact ASYNC can now be defined as
#define ASYNC(to,meth,arg) AFTER(0,to,meth,arg)

Priority assignment

Question
How do we set thread/message priority for the purpose of meeting
deadlines?

Static priorities

Assign a fixed priority to each
thread and keep it constant until
termination.

Dynamic priorities

Determine the priority at run-time
from factors such as the time
remaining until deadline.

:-(

In neither case a method exists that is both predictable and
generally applicable to all programs!

:-)

It is possible to get by if we concentrate on programs of a
restricted form.

Initial restricted model

2 seconds 2 seconds

new baseline

etc

new baseline

Baseline: start after

AFTER(SEC(2),self,meth,arg)

AFTER(SEC(2),self,meth,arg)

AFTER(SEC(2),self,meth,arg)

Original event

A

I Only periodic reactions

I Fixed periods

I No internal
communication

I Known, fixed WCETs

I Deadlines = periods

If time allows, we will discuss
how to remove these
restrictions.

Static priorities – method

Rate monotonic (RM)

Under the given assumptions, there exists a static priority
assignment rule that is really simple

The shorter the period, the higher the priority

d For RM, the actual priority values do not matter, only their
relative order.

Because of our inverse priority scale, we can simply implement RM
by letting P

i

= D
i

(=T
i

)

RM example

Given a set of periodic tasks with periods
T1 = 25ms
T2 = 60ms
T3 = 45ms

Valid priority assignments
P1 = 10 P1 = 1 P1 = 25
P2 = 19 P2 = 3 P2 = 60
P3 = 12 P3 = 2 P2 = 45

RM example

(High) T1

(Mid) T3

(Low) T2

Period = Deadline. Arrows mark start of period.
Blue: running. Gray: waiting.

Dynamic priorities – method

Earliest Deadline First – EDF
Dynamic priority assignment rule:

The shorter the time remaining until deadline, the higher
the priority

To use absolute deadlines: priorities = remaining clock cycles
(before missing the deadline)

Under EDF, each activation n of periodic task i will receive a new
priority: P

i(n)

= baseline
i(n)

+D
i

EDF example

T1

T3

T2

T1 arrives later, but its deadline is earlier than both T2’s and T3’s
absolute deadlines!

EDF example

T1

T3

T2

Deadline of T1 < Deadline of T2

EDF example

T1

T3

T2

(absolute) Deadline of T1 > (absolute) Deadline of T2

Optimality

Multiple ways assigning priorities to meet deadlines

Optimal: a method which fails only if every other method fails

I RM is optimal among static assignment methods

I EDF is optimal among dynamic methods

Schedulability

An optimal method may also fail
A set of task may not be schedulable at all

Example

The shortest path from A to B is 200km (the optimal scheduling).
We have only one hour to reach the destination and the maximum
speed is 120 km/h (deadline and platform constraints).
Can we be there on time (schedulability analysis)

Schedulability

To determine whether task set is at all schedulable (with optimal
methods)

Schedulability must take the WCETs of tasks into account.

Utilization-based analysis

Ti

Ci

For a periodic task set, an important measure is how big a fraction
of each turn a task is actually using the CPU.

That is, the CPU utilization of a periodic task i is the ratio C

i

T

i

,
where C

i

is the WCET and T
i

is the period.

Note
Any task for which C

i

=T
i

will e↵ectively need exclusive access to
the CPU!

Utilization-based analysis (RM)

Given a set of simple periodic tasks, scheduling with priorities
according to RM will succeed if

U ⌘
NX

i=1

Ci

Ti
 N(21/N � 1)

where N is the number of threads.

That is, the sum of all CPU utilizations must be less than a certain
bound that depends on N.

Utilization bounds

N Utilization bound
1 100.0 %
2 82.8 %
3 78.0 %
4 75.7 %
5 74.3 %
10 71.8 %

Approaches 69.3% asymptotically

Example A

Task Period WCET Utilization
i Ti Ci Ui

1 50 12 24%
2 40 10 25%
3 30 10 33%

The combined utilization U is 82%, which is above the bound for 3
threads (78%).

The task set fails the utilization test.

Time-line for example A

0 10 20 30 40 50 60

Missed

deadline

2++10

Example B

Task Period WCET Utilization
i Ti Ci Ui

1 80 32 40%
2 40 5 12.5%
3 16 4 25%

The combined utilization U is 77.5%, which is below the bound for
3 threads (78%).

The task set will meet all its deadlines!

Time-line for example B

0 16 32 48 968064

+ 3+ ++ +7

444444

555

+76412

4

Example C

Task Period WCET Utilization
i Ti Ci Ui

1 80 40 50%
2 40 10 25%
3 20 5 25%

The combined utilization U is 100%, which is well above the
bound for 3 threads (78%).

However, this task set still meets all its deadlines!

How can this be??

Time-line for example C

0 10
20

30
40

50
60

70 80

15

5 5 5

10 10

5 15 5

5

Characteristics

The utilization-based test

I Is su�cient (pass the test and you are OK)

I Is not necessary (fail, and you might still have a chance)

Why bother with such a test?

I Because it is so simple!

I Because only very specific sets of tasks fail the test and still
meet their deadlines!

Utilization-based analysis (EDF)

Given a set of simple periodic tasks, scheduling with priorities
according to EDF will succeed if

U ⌘
NX

i=1

Ci

Ti
 1

That is, the sum of all CPU utilizations must be less than or equal
100%, independent of the number of tasks.

Unlike the case for RM, the utilization-based test for EDF is both
su�cient and necessary (demand more than 100% of the CPU and
you are bound to fail!)

EDF vs RM

Similarities

I Both algorithms are optimal within their class

I Both are easy to implement in terms of priority queues

I Both have simple utilization-based schedulability tests

I Both can be extended in similar ways

Advantages of EDF

I Close relation to terminology of real-time specifications

I Directly applicable to sporadic, interrupt-driven tasks

I superior CPU utilization

EDF vs RM

Drawbacks of EDF

I It exhibits random behaviour under transient overload (but so
does RM, in fact, in a di↵erent way)

I RM predictably skips low priority tasks under constant
overload (but EDF rescales task priorities instead)

I Utilization-based test becomes more elaborate for EDF when
Di Ti (but is still feasible)

I Operating systems generally don’t support it (priority scales
lack granularity, no automatic time-stamping)

I Few languages allow for natural deadline constraints

However, for reactive objects, EDF fits nice as an alternative to RM

Implementation (RM)

In TinyTimber.c

struct msg_block{

...

Time baseline;

Time priority;

...

};

void async(Time offset, Time prio,

OBJECT *to, METHOD meth, int arg){

...

m->baseline=MAX(TIMERGET(),

current->baseline+offset);

m->priority = prio;

...

}

Implementation (EDF)

In TinyTimber.c

struct msg_block{

...

Time baseline;

Time deadline;

...

};

void async(Time BL, Time DL,

OBJECT *to, METHOD meth, int arg){

...

m->baseline=MAX(TIMERGET(),

current->baseline+BL);

m->deadline = m->baseline+DL;

...

}

Loosening the assumptions

Ti 6= Di

Deadlines less than periods: infrequent, urgent tasks

Sporadic Tasks

Sporadic tasks: no fixed period (interrupt handlers), urgent
deadlines

Deadline Monotonic

Basic Principle

Ci < Di < Ti

Lower deadline values get higher priority: a priority assignment is
valid when Pi < Pj iff Di < Dj .

Naive Schedulability Analysis

U ≡
N∑
i=1

Ci

Di
≤ N(21/N − 1)

More Precise Schedulability Analysis

Pre-Processing

Sort the tasks by increasing order of deadlines:

i < j iff Di < Dj

Schedulability Analysis

For each and every i ≤ n:

Ci +
i−1∑
j=1

⌈
Dj

Tj

⌉
Cj ≤ Di

Loosening the assumptions

Sporadic Tasks

Sporadic tasks: no fixed period (interrupt handlers), urgent
deadlines
Characteristics needed for schedulability analysis

Characteristics
Minimum inter-arrival time: minimum time between two events
causing sporadic tasks (e.g., key strokes, signal updates)
Period T interpreted as inter-arrival time
For sporadic tasks: D < T

Loosening the assumptions

Sporadic Tasks

Sporadic tasks: no fixed period (interrupt handlers), urgent
deadlines
Characteristics needed for schedulability analysis

Characteristics
Minimum inter-arrival time: minimum time between two events
causing sporadic tasks (e.g., key strokes, signal updates)
Period T interpreted as inter-arrival time
For sporadic tasks: D < T

Scheduling Sporadic Tasks

Polling Servers

A task with period Ts

Fixed capacity Cs

Scheduling

Sporadic events scheduled in the server when there is capacity left
Capacity is replenished every T units

Scheduling Sporadic Tasks

Polling Servers

A task with period Ts

Fixed capacity Cs

Scheduling

Sporadic events scheduled in the server when there is capacity left
Capacity is replenished every T units

Polling Servers

Schedulability Analysis

U ≡ Cs

Ts
+

N∑
i=1

Ci

Ti
≤ (N + 1)(21/(N+1) − 1)

More on real-time

Other analysis

Response-time analysis: more powerful technique than utilization
based

More on this in specialized courses on real-time (such as
distributed real time systems)

More on real-time

Other analysis

Response-time analysis: more powerful technique than utilization
based

More on this in specialized courses on real-time (such as
distributed real time systems)

	
	Time
	Sampling time
	Real-time events
	Assigning priorities
	Analysis

