
Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Functional Testing

Mohammad Mousavi

Halmstad University, Sweden

http://bit.ly/TAV16

Testing and Verification,
January 29, 2016

Mousavi: Functional Testing

http://bit.ly/TAV16

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Announcements

I Please form groups for your project

I There will be no lab sessions

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

When?

V Model

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

When?

Boehm’s Curve

requirement designspecification implementation

development

cost

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Functional Testing

I functional testing:
program is an input from a certain domain to a certain range

I impossible to check all input/output combinations:
defining a coverage criterion to choose some some

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Boundary Value Testing

I boundary value testing: a
test case for each
combination of extreme
(normal, out of bound)
values

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Boundary Value Testing: Pros and Cons

+ straightforward test-case
generation

- no sense of covering the
input domain *

- awkward for logical vars. *

- only independent input
domains *

- not using white-box
information

*: Today’s order of business.

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Weak Normal EC: Idea

I Define equivalence classes on the
domain (range) of input (output)
for each variable:
(independent input)

I cover equivalence classes for the
domain of each variable:
single fault assumption

I how many test-cases are needed?

I also called: (equivalence, category)
partition method

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Little Puzzle

What is the minimal number of tokens
that are needed to be put in an m × n
grid such that each row and column
contains at leats one token?

max(m,n):
Put token number i at
(max(i ,m),max(i , n)).

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Weak Normal EC: Idea

I Define equivalence classes on the
domain (range) of input (output)
for each variable:
(independent input)

I cover equivalence classes for the
domain of each variable:
single fault assumption

I how many test-cases are needed?
maxx | Sx |.

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Mortgage Example (recap)

Spec. Write a program that takes
three inputs: gender (boolean), age([18-55]), salary ([0-10000])
and output the total mortgage for one person

Mortgage = salary * factor,
where factor is given by the following table.

Category Male Female
Young (18-35 years) 75 (18-30 years) 70
Middle (36-45 years) 55 (31-40 years) 50
Old (46-55 years) 30 (41-50 years) 35

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Weak Normal EC Testing

Category Male Female
Young (18-35 years) 75 (18-30 years) 70
Middle (36-45 years) 55 (31-40 years) 50
Old (46-55 years) 30 (41-50 years) 35

I age: difficult! [18-30], [31-35], [36-40], [41,45], [46-50],
[51-55]

I salary: [0-10000]

I male: as strange as boundary value! true, false

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Weak Normal EC Testing

if (male) then return
((18 ≤ age < 35)?(75 ∗ salary) : (31 ≤ age < 40)?(55 ∗ salary) : (30 ∗ salary))

else return ((18 ≤ age < 30)?(75 ∗ salary) : (31 ≤ age < 40)?(50 ∗ salary) : (35 ∗ salary))

Gender Age Salary Output Correct Out. Pass/Fail
male 20 1000 75*1000 75*1000 P
female 32 1000 50*1000 50*1000 P
male 38 1000 55*1000 50*1000 P
female 42 1000 35*1000 35*1000 P
male 48 1000 30*1000 30*1000 P
female 52 1000 35*5000 too late! F

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Normal EC Testing

I cover the all combinations of
equivalence classes for the domain
of all variables:
multiple fault assumption

I number of test-cases?
∏

x | Sx |

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Normal EC Testing

Category Male Female
Young (18-35 years) 75 (18-30 years) 70
Middle (36-45 years) 55 (31-40 years) 50
Old (46-55 years) 30 (41-50 years) 35

I age: [18-30], [31-35], [36-40], [41,45], [46-50], [51-55]

I salary: [0-10000]

I male: true, false

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Normal EC Testing

if (male) then return
((18 ≤ age < 35)?(75 ∗ salary) : (31 ≤ age < 40)?(55 ∗ salary) : (30 ∗ salary))

else return ((18 ≤ age < 30)?(75 ∗ salary) : (31 ≤ age < 40)?(50 ∗ salary) : (35 ∗ salary))

Gender Age Salary Output Correct Out. Pass/Fail
female 20 1000 75*1000 70*1000 F
female 32 1000 50*1000 50*1000 P
female 38 1000 50*1000 50*1000 P
female 42 1000 35*1000 35*1000 P
female 48 1000 35*1000 35*1000 P
female 52 1000 35*5000 too late! F

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Normal EC Testing

if (male) then return
((18 ≤ age < 35)?(75 ∗ salary) : (31 ≤ age < 40)?(55 ∗ salary) : (30 ∗ salary))

else return ((18 ≤ age < 30)?(75 ∗ salary) : (31 ≤ age < 40)?(50 ∗ salary) : (35 ∗ salary))

Gender Age Salary Output Correct Out. Pass/Fail
male 20 1000 75*1000 75*1000 P
male 32 1000 50*1000 75*1000 F
male 38 1000 55*1000 50*1000 P
male 42 1000 30*1000 55*1000 F
male 48 1000 30*1000 30*1000 P
male 52 1000 30*1000 30*1000 P

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Weak Robust EC

I includes weak normal; adds out of
range test-cases for each variable

I number of test-cases?
(maxx | Sx |) + 2 ∗ n

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Weak Robust EC Testing

if (male) then return
((18 ≤ age < 35)?(75 ∗ salary) : (31 ≤ age < 40)?(55 ∗ salary) : (30 ∗ salary))

else return ((18 ≤ age < 30)?(75 ∗ salary) : (31 ≤ age < 40)?(50 ∗ salary) : (35 ∗ salary))

Gender Age Salary Output Correct Out. Pass/Fail
male 17 1000 30*1000 too young! F
female 56 1000 35*1000 too late F
male 36 -1 55*-1 0 F
female 36 10001 50*10001 50*10000 F

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Robust EC

I Same as strong normal but also
checks for all out of range
combinations

I number of test-cases?∏
x(| Sx | +2)

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Robust EC

if (male) then return
((18 ≤ age < 35)?(75 ∗ salary) : (31 ≤ age < 40)?(55 ∗ salary) : (30 ∗ salary))

else return ((18 ≤ age < 30)?(75 ∗ salary) : (31 ≤ age < 40)?(50 ∗ salary) : (35 ∗ salary))

Mostly similar faults to Weak Robust EC:
Gender Age Salary Output Correct Out. Pass/Fail
male 17 1000 30*1000 too young! F
female 56 1000 35*1000 too late F
female 17 1000 35*1000 too young! F
male 56 1000 30*1000 too late F
male 36 -1 55*-1 0 F
female 36 10001 50*10001 50*10000 F
. . .

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

A Brief Comparison

A→ B: Test-cases of A
(faults detected by A) is a
subset of those of B.

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Mortgage Case: #Test-Cases

rob wc wc rob bv bv st rob ec st nor ec wk rob ec ec

technique

test-cases/faults

40

20

60

80

100

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Mortgage Case: Detected Fault

rob wc wc rob bv bv st rob ec st nor ec wk rob ec ec

technique

detected faults

4

2

6

8

10

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Mortgage Case: #Test-Cases/Fault

rob wc wc rob bv bv st rob ec st nor ec wk rob ec ec

technique

test-cases/faults

8

4

12

16

20

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Idea

I Considering the boundaries of each
partition relevant

I Example:
Robust worst case testing of of
partitions

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Robust EC + Robust BV

Gender Age Salary Output Correct Out. Pass/Fail
male 17 -1 30*-1 too young! F 1
male 17 1000 30*1000 too young! F 1
male 17 10001 30*10001 too young! F 1
male 56 ‘ -1 30*-1 too late F 2
male 56 1000 30*1000 too late F 2
male 56 10001 30*10001 too late F 2
female 17 -1 30*-1 too young! F 3
female 17 1000 30*1000 too young! F 3
female 17 10001 30*10001 too young! F 3
female 56 -1 30*-1 too late F 4
female 56 1000 30*1000 too late F 4
female 56 10001 30*10001 too late F 4

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Robust EC + Robust BV (Cont’d)
Gender Age Salary Output Correct Out. Pass/Fail
female 18 1000 75*1000 70*1000 F 5
female 19 1000 75*1000 70*1000 F 5
female 20 1000 75*1000 70*1000 F 5
female 29 1000 75*1000 70*1000 F 5
female 30 1000 35*1000 70*1000 F 6
female 31 1000 50*1000 50*1000 P
female 32 1000 50*1000 50*1000 P
female 34 1000 50*1000 50*1000 P
female 35 1000 50*1000 50*1000 P
female 36 1000 50*1000 50*1000 P
female 38 1000 50*1000 50*1000 P
female 39 1000 50*1000 50*1000 P
female 40 1000 35*1000 50*1000 F 7

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Robust EC + Robust BV (Cont’d)

Gender Age Salary Output Correct Out. Pass/Fail
female 41 1000 35*1000 35*1000 P
female 42 1000 35*1000 35*1000 P
female 44 1000 35*1000 35*1000 P
female 45 1000 35*1000 35*1000 P
female 46 1000 35*1000 35*1000 P
female 49 1000 35*1000 35*1000 P
female 50 1000 35*1000 35*1000 P
female 51 1000 35*1000 too late! F 7
female 52 1000 35*1000 too late! F 7
female 53 1000 35*1000 too late! F 7
female 54 1000 35*1000 too late! F 7
female 55 1000 35*1000 too late! F 7

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Robust EC + Robust BV (Cont’d)
Gender Age Salary Output Correct Out. Pass/Fail
male 18 1000 75*1000 75*1000 P
male 19 1000 75*1000 75*1000 P
male 20 1000 75*1000 75*1000 P
male 29 1000 75*1000 75*1000 P
male 30 1000 75*1000 75*1000 P
male 31 1000 55*1000 75*1000 F 8
male 32 1000 55*1000 75*1000 F 8
male 34 1000 55*1000 75*1000 F 8
male 35 1000 55*1000 75*1000 F 9
male 36 1000 55*1000 55*1000 P
male 38 1000 55*1000 55*1000 P
male 39 1000 55*1000 55*1000 P
male 40 1000 55*1000 20*1000 F 10

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Robust EC + Robust BV (Cont’d)

Gender Age Salary Output Correct Out. Pass/Fail
male 41 1000 30*1000 30*1000 P
male 42 1000 30*1000 30*1000 P
male 44 1000 30*1000 30*1000 P
male 45 1000 30*1000 30*1000 P
male 46 1000 30*1000 30*1000 P
male 49 1000 30*1000 30*1000 P
male 50 1000 30*1000 30*1000 P
male 51 1000 30*1000 30*1000 P
male 52 1000 30*1000 30*1000 P
male 53 1000 30*1000 30*1000 P
male 54 1000 30*1000 30*1000 P
male 55 1000 30*1000 30*1000 P

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Robust EC + Robust BV (Cont’d)

Gender Age Salary Output Correct Out. Pass/Fail
female 17 -1 35*-1 0 F 11
female 18 -1 75*-1 0 F 11
.

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Robust EC + Robust BV (Cont’d)

Gender Age Salary Output Correct Out. Pass/Fail
female 17 10001 35*10001 too young! F 11
female 18 10001 75*10001 75*10000 F 12
. . .

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Robust EC + Robust BV (Cont’d)

Gender Age Salary Output Correct Out. Pass/Fail
male 17 -1 30*-1 0 F 12
male 18 -1 70*-1 0 F 12
. . .

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Strong Robust EC + Robust BV (Cont’d)

Gender Age Salary Output Correct Out. Pass/Fail
male 17 10001 30*10001 too young! F 12
male 18 10001 70*10001 75*10000 F 12
. . .

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Problems

I Example:
Strong EC + Robust BV
number of test-cases:
∼

∏
x 4(| Sx | +1), whopping!

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Problems

I >100 test-cases for the mortgage
example

I too many for any real-life program
e.g., 5 vars., each 5 partitions:
∼ 8 million test-cases
1 sec. for each test-case:
3 months testing!

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Problems

I Problems:

1. No constraints on the equivalence
classes

2. Dependencies among different
variables not taken into account

3. No choice among relevant classes
(e.g., apply worst-case testing on
some and boundary values on
others)

I Solutions: Decision tables,
classification trees

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Possible Solution: Pairwise Testing

I Pairwise testing: for each two variables and each two
partitions of their valuations, there is at least one test case

I T -wise testing: for each T variables and each T partitions of
their valuations, there is at least one test case

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Idea

I Goal: Summarize the logic of the program (à la Karnaugh
maps)

I Find a few conditions on input determining the output
behavior
need not be independent
relaxing the independence assumption in all previous
techniques

I Determine the output actions
for each combination of condition evaluations

I also called: cause-effect graph testing, or
tableau testing

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Basic Concepts

I Stub:
I condition part

the most dominating
conditions first
multi-valued conditions
and special cases last

I action part
exceptions
preferably combined
actions as new rows

Stub Entry
c1 F T T
c2 - F T
c3 - - F

a1 X - -
a2 - X -
a1;a2 - - X

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Basic Concepts

I Entry
I columns are called rules
I condition part: true,

false, (possibly other
values) or don’t care

I action part

Stub Entry
c1 F T T
c2 - F T
c3 - - F

a1 X - -
a2 - X -
a1;a2 - - X

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Basic Concepts

I Completeness check for
independent variables

I each don’t care counts
for two rules

I there must be 2|{ci}|

rules
(for ni -valued
conditions:

∏
i ni)

c1 F T T
c2 - F T
c3 - - F

a1 X - -
a2 - X -
a1;a2 - - X

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Basic Concepts

I Completeness check for
independent variables

I each don’t care counts
for two rules

I there must be 2|{ci}|

rules
(for ni -valued
conditions:

∏
i ni)

c1 F T T T
c2 - F T T
c3 - - F T

a1 X - - -
a2 - X - -
a1;a2 - - X -
error - - - X

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Conditions/Actions
c7: 0≤salary≤10000? n y y y y y y y y
c1: male? - - - y y y n n n
c2: too young? [..,18] - y - - - - - - -
c3: young? m:[18,..,35], f:[18,..,30] - - - y - - y - -
c4: mid? m:[36,..,45], f:[31,..,40] - - - - y - - y -
c5: old? m:[46,..,55], f:[40,..,50] - - - - - y - - y
c6: too old? m:[56,..], f:[51,..] - - y - - - - - -

a1: wrong inputs X X X - - - - - -
a2: 75*salary - - - X - - - - -
a3: 70*salary - - - - - - X - -
a4: 55*salary - - - - X - - - -
a5: 50*salary - - - - - - - X -
a6: 35*salary - - - - - - - - X
a7: 30*salary - - - - - X - - -

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Decision Table for Testing
variables: Physical or Logical P P P P P L L L L L
Independent? y y y y n y y y y n
Single fault assum.? y y n n - y y n n -
Exception handling? y n y n - y n y n -

BV X
Robust X
WC X
Robust WC X
EC X
Strong (Normal) EC X
(Weak) Robust EC X
Strong Robust EC X
Decision Table X X

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Basic Steps

Classification tree:

I Determine the aspects of
specification influencing the logic

I Establish a hierarchy between
aspects (the more global conditions
first)

I Partition the input domain for each
aspect
cover the whole domain of the
“parent” node

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Basic Steps

Combination table:

I Define a test-case for each relevant
combination of inputs

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Example

Informal Spec

Consider the function count(list : List(El), el : El) : int,
which takes a list of elements (with an order defined on them),
and an element
and output the number of occurrences of the element in the list.

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Mortgage Example

Classes

1. Salary: -1, [0..10000], >10000,

2. Gender: Male, Female,

3. Age: Too young, Young, Middle, Old, Too old (dependent on
gender)

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

Functional Testing

I Equivalence testing forms the basis:
I Strong variants are often practically infeasible
I Robust techniques are very effective for PL’s with weak typing

I Decision tables and classification trees, help us in:

1. summarizing the logic
2. identifying and documenting the effective methods and

test-cases.

Mousavi: Functional Testing

Introduction Equivalence Class Testing Decision Tables Classification Trees Conclusions

One Sentence to Take Home
No perfect functional testing technique exists:
classification tree (or DT)
augmented with coverage information (to iteratively add test
cases) should provide an effective mix.

Mousavi: Functional Testing

	Introduction
	Equivalence Class Testing
	Decision Tables
	Classification Trees
	Conclusions

