
Practical Model-based Testing
With Papyrus and RT-Tester

Jan Peleska and Wen-ling Huang
University of Bremen

Verified Systems International GmbH
Fourth Halmstad Summer School on Testing,

2014-06-11

Acknowledgements. This presentation
has been elaborated in the context of the
EU FP7 COMPASS project under grant
agreement no.287829.

Overview

• Model-based testing	

• Test Modelling With Papyrus	

• Model-based Testing With RT-Tester	

• Requirements, test cases, procedures,
results, and Traceability	

• Demonstration and Practical
Exercises

Overview

• Model-based testing	

• Test Modelling With Papyrus	

• Model-based Testing With RT-Tester	

• Requirements, test cases, procedures,
results, and Traceability	

• Demonstration and Practical
Exercises

Our MBT Approach

Instead of writing test procedures,	

• develop a test model specifying expected
behaviour of SUT ➔ the first MBT variant 	

• use generator to identify “relevant” test
cases from the model and calculate concrete
test data	

• generate test procedures fully automatic	

• perform tracing requirements ↔ test cases
in a fully automatic way

MBT-Paradigm

Model System

Abstract Tests Executable
Tests

Is a partial 	

description of

can be run 	

against

Are abstract 	

versions of

Are derived 	

from

Overview

• Model-based testing	

• Test Modelling With Papyrus	

• Model-based Testing With RT-Tester	

• Requirements, test cases, procedures,
results, and Traceability	

• Demonstration and Practical
Exercises

Papyrus

• Modelling with EMF-based formalisms	

• EMF – Eclipse Modelling Framework	

• Papyrus provides UML, SysML, DSL
support	

• Open source – free to use 	

• http://www.eclipse.org/papyrus/

http://www.eclipse.org/papyrus/

SysML

• Block definition diagrams	

• Internal block diagrams	

• Item flows	

• State machines with timers	

• Operations	

• Requirements 	

• <<satisfy>> relationship between
requirements and model elements

Case Studies With SysML

• Simplified version of the turn
indication and emergency flashing
function in Daimler vehicles	

• Full model available under

http://www.mbt-benchmarks.org!

 ➔ Benchmarks!

 ➔ Turn Indicator Model Rev. 1.4

http://www.mbt-benchmarks.org
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/turn_indicator/index_e.html

Case Studies With SysML

• New model available: the Ceiling
Speed Monitor of the ETCS
(European Train Control System)	

• Full model available under

http://www.mbt-benchmarks.org!

 ➔ Benchmarks!

 ➔ openETCS/ceiling-speed-monitoring

http://www.mbt-benchmarks.org

Model Introduction With Papyrus

• System interface – block diagram	

• Requirements	

• System Under Test – internal block
diagram	

• Further decompositions – internal
block diagrams and block references	

• Behaviour associated with block leaves
– state machines and operations

Overview

• Model-based testing	

• Test Modelling With Papyrus	

• Model-based Testing With RT-Tester	

• Requirements, test cases, procedures,
results, and Traceability	

• Demonstration and Practical
Exercises

RT-Tester Internals

Further reading. Industrial-Strength Model-Based Testing - State of the Art and Current
Challenges. In Petrenko, Alexander K. and Schlingloff, Holger (eds.): Proceedings Eighth Workshop
on Model-Based Testing, Rome, Italy, 17th March 2013, Electronic Proceedings in Theoretical
Computer Science 111, pp. 3-28 (2013). DOI:10.4204/EPTCS.111.1

http://arxiv.org/abs/1303.1006v1
http://arxiv.org/abs/1303.0379

Reference Tool RT-Tester

• Supports all test levels – from unit to
system integration testing	

• Software tests and hardware-in-the-
loop tests	

• Test projects may combine hand-
written test procedures with
automatically generated procedures

➜ The tool capabilities are presented here to stimulate
benchmarking activities

Eclipse – Papyrus – RT-Tester Integration

Your Laptop – Client

Eclipse

Papyrus Plugin

RT-Tester Plugin

Server

RT-Tester 	

MBT Server

Eclipse – Papyrus – RT-Tester Integration

Your Laptop – Client

Eclipse

Papyrus Plugin

RT-Tester Plugin

Server

RT-Tester 	

MBT ServerFree for academic use

Free

Server located at University of Bremen

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling ToolTool Components
and Data Structures

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling ToolTool Components
and Data Structures

Modelling Tool	

• UML/SysML subset 	

• Enterprise Architect	

• Artisan Studio	

• Rhapsody	

• Papyrus	

!

• Alternatively: 	

• DSL	

• MetaEdit+

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Parser Front Ends	

• transform model
representations in XMI
format into abstract
syntax tree	

• AST = Internal Model
Representation IMR

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Model Transformers provide
alternative AST representations	

• Cone of influence reduction	

• Test oracles	

• Equivalence class abstraction

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Test Case Generator	

• identifies “relevant” test cases 	

• uses ASTs as identification basis	

• exploits traceability information from
requirements to model elements	

• encodes test case goals as propositions

G(s0, s1, . . . , sc)

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Transition Relation Generator	

• encodes operational semantics
of the model by relating
pre-states to post states	

�(s, s0)

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

SMT-Solver	

• calculates solution of test goals which are
compatible with the transition relation

J(s0) ^
n̂

i=0

�(si, si+1) ^G(s0, . . . , sn+1)

Can handle
Boolean, Integer,
Float, Array data
types

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Concrete interpreter	

• executes the model from current pre-state
with the input data calculated by the
solver

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Abstract interpreter	

• speeds up SMT-solver by	

• calculating minimal number of steps
required for finding solutions	

• restricting the ranges of inputs and
other model variables in traces leading
to a solution of

J(s0) ^
n̂

i=0

�(si, si+1) ^G(s0, . . . , sn+1)

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Test Procedure Generator	

• is a compile back-end for transforming
test case solutions to executable test
procedures	

• provides different compile back-ends for
RT-Tester Real-Time Test Language,
PROVEtech:TA, and TTCN-3

Overview

• Model-based testing	

• Test Modelling With Papyrus	

• Model-based Testing With RT-Tester	

• Requirements, test cases, procedures,
results, and Traceability	

• Demonstration and Practical
Exercises

Model Semantics

• Based on Kripke Structures	

• Equivalent to alternative operational
semantics based on labelled transition
systems

K = (S, S0, R, L)

S : State space

S0 ✓ S : Initial states

R ✓ S ⇥ S : Transition relation

L : S ! 2

AP
: Labelling function

AP : Atomic propositions

Requirements

• Each requirement is reflected by set
of model computations

⇡ = s0.s1.s2 . . .

• Computation sets can be characterised
by Linear Temporal Logic (LTL)

G� : Globally � holds on path ⇡

X� : In the next state on path ⇡, formula � holds.

F� : Finally � holds on path ⇡

�U : F and � holds on path ⇡ until is fulfilled

Requirements Tracing –
Complex Requirements

• Computations contributing to
complex requirements require full
LTL expressions	

• Insert LTL formula in constraint	

• Link constraint to requirement via
<<satisfy>> relation

Test Cases

• Test cases are finite witnesses of model
computations 	

• Trace = finite prefix of a computation	

• If computation satisfies LTL formula associated with
a requirement, trace prefixes must at least not
violate this formula	

• Some formulas can only be verified on an infinite
computation (liveness formulas, e.g. fairness
properties)	

• But these properties can only be partially verified by
testing

Test Data Computation

• LTL formulas interpreted on finite
traces can be transformed into first
order expressions

tc ⌘ J(s0) ^
n̂

i=0

�(si, si+1) ^G(s0, . . . , sn+1)

• Recall. These formulas can be solved by
an SMT solver

Model Coverage Strategies
Strategies currently realised in RT-Tester	

• Basic control state coverage	

• Transition coverage	

• MC/DC coverage	

• Hierarchic transition coverage	

• Equivalence class and boundary value coverage	

• Basic control state pairs coverage	

• Interface coverage (under construction)	

• Block coverage (under construction)	

• Equivalence class partitioning (under construction)

Overview

• Model-based testing	

• Test Modelling With Papyrus	

• Model-based Testing With RT-Tester	

• Requirements, test cases, procedures,
results, and Traceability	

• Demonstration and Practical
Exercises

Test Generation Context and
Test Execution Context

• Test generation context. Configure
the test procedure to be generated	

• Test execution context. Execute the
test procedure against the system
under test

Work Flow

• Create the test model (Papyrus perspective)	

• Create RT-Tester project (RT-Tester
perspective)	

• Import model to RT-Tester project	

• Configure and create initial test procedure
– model-coverage approach	

• Configuration file	

• Signal map	

• Analyse signal flow

Work Flow

• Optional: create a simulation	

• Compile and run test procedure	

• Replay test procedure	

• Analyse requirements and test cases	

• Create new generation context	

• Allocate test cases to procedure to
be generated

