Practical Model-based Testing
With Papyrus and RI-Tester

Jan Peleska and Wen-ling Huang
University of Bremen
Verified Systems International GmbH
Fourth Halmstad Summer School on Testing,
2014-06-11

@ Universitat Bremen
CCMPASS

Acknowledgements. This presentation

has been elaborated in the context of the
EU FP7 COMPASS project under grant
agreement no.287829.

Overview

® Model-based testing
® [est Modelling With Papyrus
® Model-based Testing With RI-Tester

® Requirements, test cases, procedures,
results, and Traceability

® Demonstration and Practical
Exercises

Overview

® Model-based testing

Our MBT Approach

Instead of writing test procedures,

develop a test model specifying expected
behaviour of SUT => the first MBT variant

use generator to identify “relevant” test
cases from the model and calculate concrete
test data

generate test procedures fully automatic

perform tracing requirements < test cases
in a fully automatic way

MB I-Paradigm

Is a partial
description of

Are derived can be run
from against

xecutable

Are abstract
versions of

Overview

® [est Modelling With Papyrus

Papyrus

® Modelling with EMF-based formalisms

® EMF — Eclipse Modelling Framework

® Papyrus provides UML, SysML, DSL
support

® Open source — free to use

® http://www.eclipse.org/papyrus/

http://www.eclipse.org/papyrus/

SysML

® Block definition diagrams
® |[nternal block diagrams

® |[tem flows

® State machines with timers
® Operations

® Requirements

® <<satisfy>> relationship between
requirements and model elements

Case Studies With SysML

® Simplified version of the turn
indication and emergency flashing
function in Daimler vehicles

® Full model available under

http://www.mbt-benchmarks.org
—> Benchmarks

= Turn Indicator Model Rev. 1.4

http://www.mbt-benchmarks.org
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/turn_indicator/index_e.html

Case Studies With SysML

® New model available: the Ceiling
Speed Monitor of the ETCS
(European Train Control System)

® Full model available under

http://www.mbt-benchmarks.org
—> Benchmarks

-> openETCS/ceiling-speed-monitoring

http://www.mbt-benchmarks.org

Model Introduction With Papyrus

® System interface — block diagram
® Requirements

® System Under Test — internal block
diagram

® Further decompositions — internal
block diagrams and block references

® Behaviour associated with block leaves
— state machines and operations

Overview

® Model-based Testing With RI-Tester

RI-Tester Internals

Further reading. Industrial-Strength Model-Based Testing - State of the Art and Current
Challenges. In Petrenko, Alexander K. and Schlingloff, Holger (eds.): Proceedings Eighth Workshop
on Model-Based Testing, Rome, Italy, | 7th March 201 3, Electronic Proceedings in Theoretical
Computer Science |11, pp. 3-28 (2013). DOI:10.4204/EPTCS. 1 1 1.1

http://arxiv.org/abs/1303.1006v1
http://arxiv.org/abs/1303.0379

Reference Tool RI-Tester

® Supports all test levels — from unit to
system integration testing

® Software tests and hardware-in-the-
loop tests

® [est projects may combine hand-
written test procedures with
automatically generated procedures

=» The tool capabilities are presented here to stimulate
benchmarking activities

Y Py - -~ _ Bl

Eclipse — Papyrus — RI-Tester Integration

Eclipse

Papyrus Plugin

RT-Tester
RT-Tester Plugin MBT Server

Eclipse — Papyrus — RI-Tester Integration

Eclipse Gee

Papyrus Plugin

\ RT-Tester
MBT Server

Free for academic use/

Server located at University of Bremen

TOOl Components Modelling Tool
and Data Structures "

Model (XMI)

A\ 4

RT-Tester Model Parser Model Transformers

Transition Relation

RT-Tester IMR (AST) Generator

Test Case Generator

Test Case-

Specific Goal Transition Relation

SMT-Solver SONOLAR

A\ 4

Model State

. Concrete Test Data
Abstractions

A 4 \ 4

Test Procedure

Concrete Interpreter
Generator

A 4

Abstract Interpreter

\ 4

RT-Tester Test
Procedure

Tool Com Ponents Modelling Tool

and Data Structures @ (\m
N

RT-Tester Mod MOdelling TOOI
® UML/SysML subset

Test Case Generator ‘—@‘ El‘l‘l’erprise AfChi‘l’eC‘l'
" ® Artisan Studio
Test Case-
Q e Rhapsody
SMT—SoIverSO‘ Papyrus

@T. Alternatively:
i Il @ DSL

Test Proce

Concrete Interpreter Generatl @ M e.l- aEd i 1’ +

Abstract Interpreter RT-Tester ?est |

Procedure

Modelling Tool

RT-Tester Model Parser

(Parser front Ends
® transform model

format into abstract
syntax tree

Representation IMR

representations in XMI

® AST = Internal Model \D

-Solver SONOLAR

Model Transformers

%IMR (AST) Transition Relation

Generator

Abstract Interpreter

Test Procedure
l.[‘=|\| 9| TP IRV ATER Y h.l | Generator

RT-Tester Test
Procedure

Transition Relation

Modelling Tool

RT-Tester Model Parser Model Transformers
‘—/\}; j Transition Relation
Test Case Generator RT-Tester IMR (AST)
s e e e e = Generator

Model Transformers provide —
alternative AST representations T\D
® Cone of influence reduction
® Test oracles

® Equivalence class abstraction
1t — ')

Concrete laterpreter

Jdest Proceduke
Generator

Abstract Interpreter RT-Tester Test
Procedure

Modelling Tool

RT-Tester Model Parser Model Transformers

Test Case Generator RT-Tester IMR (AST) Tran:;z:gr;iit'on

<

_ﬁ<;;

Cona

Abst

Test Case Generator

@ identifies “relevant” test cases

@ uses ASTs as identification basis

® exploits traceability information from
requirements to model elements

® encodes test case goals as propositions

G(S0, 51, ...,5¢)

N\

Modelling Tool

\ 4
e ——

/Transifion Relation Generator

® encodes operational semantics
of the model by relating - =
pre-states to post states ;

d(s,s)

; SIM I-dSolver bUNULA%

\ 4
Model State
: Concrete Test Data
Abstractions
\ 4 \ 4

~\

Model Transformers

Transition Relation
Generator

Concrete Interpreter

Test Procedure
Generator

Abstract Interpreter

RT-Tester Test
Procedure

Transition Relation

Madalline Taal

[SMT-Solver
@ calculates solution of test goals which are
compatible with the transition relation .

J(s0) A /\ D(si, 8i+1) N G(S05- -5 Snt1)
i=0

_/\ \v /

SMT-Solver SONOLAR

Model State Concrete Test>r
Abstractions C a n h a n d le

Test Procedure BOOleanl In.l-egerl
Generator
Float, Array data

Concrete Interpreter

Abstract Interpreter RT-Tester Test

4 .)
Concrete Interpreter

@ executes the model from current pre-state

with the input data calculated by the

N

solver
Transition Relation
Test Cal [|Generator RT-Tester IMR (AST) Generator

Tey Case-

Transition Relation
Speq jc Goal

SMT-Solver SONOLAR

\4
ﬁ TeSt Data

Test Procedure
Generator

Abstract Interpreter RT-Tester Test
Procedure

Moljel State
Absliractions

Concrete Interpreter

Modelling Tool

4 :

Abstract interpreter

® speeds up SMT-solver by

® calculating minimal number of steps
required for finding solutions

@ restricting the ranges of inputs and
other model variables in traces leading
to a solution of

J(SO) A /\ (I’(Su 5i—|—1) A G(SO, cee Sn+1)

1=0
.

V= \ 4
Test Procedure
Generator

Co\ ‘rete Interpreter

Abstract Interpreter RT-Tester Test
Procedure

Modelling Tool

[T est Procedure Generator

|@is a compile back-end for transforming
test case solutions to executable test
procedures

@ provides different compile back-ends for
RT-Tester Real-Time Test Language,

PROVEtech:TA, and TTCN-3
\

1"10UcC] olalc
) & loncrete Test Data
Abstractions
/ \
\ 4 \ 4

Test Procedure
Generator

Abstract Interpreter RT-Tester Test
Procedure

Concrete Interpreter

Overview

® Requirements, test cases, procedures,
results, and Traceability

Model Semantics

® Based on Kripke Structures

® Equivalent to alternative operational
semantics based on labelled transition
systems
K=1(5,8),R,L)
S : State space
So € S : Initial states

R C S xS : Transition relation

L:S — 24 : Labelling function

AP : Atomic propositions

Requirements

® Fach requirement is reflected by set
of model computations

m = S50.51.592.

® Computation sets can be characterised
by Linear Temporal Logic (LTL)

Go : Globa.
X : In the next state on pat]

Fo¢ : Fina.

ly ¢ hol

ly ¢ holds on pat!

n 7, formula ¢ hol

ds on pat.

N T
ds.

1 7T

oUv : FiY and ¢ holds on path 7 until

| is fulfil

led

Requirements [racing —
Complex Requirements

® Computations contributing to
complex requirements require full
LTL expressions

® [nsert LTL formula in constraint

® Link constraint to requirement via
<<satisfy>> relation

Test Cases

® Jest cases are finite witnhesses of model
computations

® Trace = finite prefix of a computation

® |[f computation satisfies LTL formula associated with
a requirement, trace prefixes must at least not
violate this formula

® Some formulas can only be verified on an infinite
computation (liveness formulas, e.g. fairness
properties)

® But these properties can only be partially verified by
testing

Test Data Computation

® | TL formulas interpreted on finite
traces can be transformed into first
order expressions

n

tc = J(s0) A /\ (s, 5i41) NG(S05- -+, Snt1)
i=0

® Recall. These formulas can be solved by
an SMT solver

Model Coverage Strategies

Strategies currently realised in RT-Tester
® Basic control state coverage
® Transition coverage
® MC/DC coverage
® Hierarchic transition coverage
® Equivalence class and boundary value coverage
® Basic control state pairs coverage
® |nterface coverage (under construction)
® Block coverage (under construction)

® Equivalence class partitioning (under construction)

Overview

® Demonstration and Practical
Exercises

Test Generation Context and
Test Execution Context

® TJest generation context. Configure
the test procedure to be generated

® [est execution context. Execute the
test procedure against the system
under test

Work Flow

® Create the test model (Papyrus perspective)

® Create RI-Tester project (RT-Tester
perspective)

® Import model to RI-Tester project

® Configure and create initial test procedure
— model-coverage approach

® Configuration file
® Signal map

® Analyse signal flow

Work Flow

® Optional: create a simulation

® Compile and run test procedure

® Replay test procedure

® Analyse requirements and test cases
® Create new generation context

® Allocate test cases to procedure to
be generated

