
Organization Why? What? How?, When?

Software Testing: Introduction

Mohammad Mousavi

Halmstad University, Sweden

http://ceres.hh.se/mediawiki/DIT085

Testing and Verification (DIT085),
Chalmers and GU, January 23, 2015

Mousavi: Software Testing: Introduction

http://ceres.hh.se/mediawiki/DIT085

Organization Why? What? How?, When?

Outline

Organization

Why?

What?

How?, When?

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Contact information

Courses Web Pages

http://ceres.hh.se/mediawiki/DIT085

Check for news, updates, course material and much more!

Mohammad Mousavi

Office Halmstad University, E 320
Fridays: Jupiter, 427

E-mail M.R.Mousavi@hh.se

Telephone (035 16) 7122

WWW http://ceres.hh.se/mediawiki/Mohammad Mousavi

Mousavi: Software Testing: Introduction

http://ceres.hh.se/mediawiki/DIT085

Organization Why? What? How?, When?

Objectives and assessment

Learning objectives: Knowledge

1. understand the basic terminology of testing,

2. name and describe different testing techniques and
approaches,

3. describe the connection between software development phases
and kinds of testing, and

4. exemplify and describe a number of different test methods,
and be able to use them in practical situations.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Objectives and assessment

Learning objectives: Skills

1. construct appropriate and meaningful test cases,

2. interpret and explain the results a test campaign,

3. plan and produce appropriate documentation for testing,

4. write models in at least one formal specification language, and

5. apply different testing techniques on realistic examples.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Objectives and assessment

Learning objectives: Judgment

1. compare different tools and techniques for testing software,
and plan their use in appropriate contexts,

2. compare and judge alternatives to testing, such as model
checking and runtime verification

3. identify and hypothesize about sources of program failures,
and reflect on how to better verify the correctness of such
programs.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Objectives and assessment

Evaluation method

I Practical project (P),

I Written exams (W), closed book

The final mark (VG, G, or U) = min (P, W)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Project: WhatsUpGU

General Description

I Server:
I connection-based (TCP-IP-based) server,
I to be implemented in Java,
I multi-threaded,
I XML interface for adding, editing, and

fetching messages.

I Client:
I Android-based,
I able to deal with communication faults.

Photo: Copyright WhatsApp Inc.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Project: WhatsUpGU

General Description

I Server:
I connection-based (TCP-IP-based) server,
I to be implemented in Java,
I multi-threaded,
I XML interface for adding, editing, and

fetching messages.

I Client:
I Android-based,
I able to deal with communication faults.

Photo: Copyright WhatsApp Inc.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Project: WhatsUpGU

Testing Perspective

I test-driven development,

I unit testing using jUnit,

I coverage metrics using Cobertura (or similar
tools),

I integration testing, developing stubs using
jMockIt (or similar tools),

I model checking using Uppaal, and

I UI testing using the Visual GUI Testing tool.

Photo: Copyright WhatsApp Inc.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Project: WhatsUpGU

Schedule and Deadlines

I Forming Groups: January 27 at 17:00

I Phase 1: TDD of a Unit: February 13 at
17:00,

I Phase 2: Integration (Testing) of the Server:
February 20 at 17:00

I Phase 3: Specification and Model Checking:
February 27 at 17:00

I Phase 4: UI Testing: March 13 at 17:00

Photo: Copyright WhatsApp Inc.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Project: WhatsUpGU

Schedule and Deadlines
By the deadline:

I Deliverable submitted on GUL,

I Oral presentation given by all group
members to the instructor.

Photo: Copyright WhatsApp Inc.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Our Order of Business

I Terminology and Functional Testing (today)

I Test-Driven Development and jUnit (January 30)

I Coverage Criteria (February 6 and 13)

I Model Checking (February 20)

I GUI Testing (February 27)

I Slicing and Debugging (March 6)

I Reviewing Model Examination (March 13)

I Guest Lectures from Volvo (To be confirmed: March 4 and
12)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

General Information

I Text book: P. Ammann and J. Offutt,
Introduction to Software Testing, Cambridge
University Press, 2008.

I Papers to be handed out during each lecture.

I Recommended books posted on the course
page.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Outline

Organization

Why?

What?

How?, When?

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Software at Your Heart. . .

Software glitches in pacemakers

Company said it has not received any reports of
deaths or clinical complications resulting from the
glitch, which appears in about 53 out of every
199,100 cases.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Software at Your Heart. . .

At least 212 deaths from device failure in five
different brands of implantable
cardioverter-defibrillator (ICD) according to a
study reported to the FDA

[Killed by Code, 2010]

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

“Bugs”

I Facts of life! (correct by construction: not
always possible / affordable)

I Serious consequences (Pentium bug, OV
Chipcard, etc.)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

A Classic Bug

I Ariane 5 explosion report:

This loss of information was due to specification and
design errors in the software ... caused during execution
of a data conversion from 64-bit floating point to 16-bit
signed integer value. The floating point number which
was converted had a value greater than what could be
represented ...

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

A Classic Bug

I Ariane 5 explosion report:

This loss of information was due to specification and
design errors in the software ... caused during execution
of a data conversion from 64-bit floating point to 16-bit
signed integer value. The floating point number which
was converted had a value greater than what could be
represented ...

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

The NorthWest Blackout “Bug”

I Widespread blackouts in 2003

I Affecting 8 US states and a part of Canada

I Traced back to a race condition bug

I Surfaced after 3 million hours of operation

Moral of the Story

If it can go wrong, it will go wrong.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

“Bugs”

I 2002 Costs: 60 Billion USD (only USA).
I Coders introduce bugs at the rate

of 4.2 defects per hour of
programming. If you crack the
whip and force people to move
more quickly, things get even
worse. [Watts Humphreys]

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

Quest for Quality

I Software quality will become the
dominant success criterion in the
software industry.

[ACM Workshop on Strategic
Directions in Software Quality]

I Testing:
I a way to achieve better quality
I >50% of the development costs

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Why?

Bezier’s Testing Levels

L0 debugging (ad hoc, few input/outputs)

L1 showing that software works (validating
some behavior)

L2 showing that software does not work
(scrutinizing corner cases)

L3 reducing risks (organizing and prioritizing
test goals)

L4 mental discipline for quality (central to
development)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Outline

Organization

Why?

What?

How?, When?

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

Sorts of “Bug”

I Fault: incorrect implementation
I commission: implement the wrong

specification
I omission: forget to implement a

specification
(the more difficult one to find and resolve)

I Error: incorrect system state (e.g., incorrect
value for a variable)

I Failure (anomaly, incident) : visible error in
the behavior

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

Sorts of “Bug”

I Fault: incorrect implementation
I commission: implement the wrong

specification
I omission: forget to implement a

specification
(the more difficult one to find and resolve)

I Error: incorrect system state (e.g., incorrect
value for a variable)

I Failure (anomaly, incident) : visible error in
the behavior

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

Sorts of “Bug”

I Fault: incorrect implementation
I commission: implement the wrong

specification
I omission: forget to implement a

specification
(the more difficult one to find and resolve)

I Error: incorrect system state (e.g., incorrect
value for a variable)

I Failure (anomaly, incident) : visible error in
the behavior

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Spec: A program that inputs an integer, and outputs 2 ∗ i3.

int i;
i << cin;
i = 2 * i;
i = exp(i,3);
cout << i;

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?
Spec: A program that inputs an integer, and outputs 2 ∗ i3.

1: int i;
2: i << cin;
3: i = 2 * i;
4: i = exp(i,3);
5: cout << i;

I Conceptual mistake: confusing the binding power of operators

I Fault: Statements 3 and 4 are in the wrong order

I Failure:
Test-case: on input 1, the program must output 2.
input 1 ... output 8!

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?
Spec: A program that inputs an integer, and outputs 2 ∗ i3.

1: int i;
2: i << cin;
3: i = 2 * i;
4: i = exp(i,3);
5: cout << i;

I Conceptual mistake: confusing the binding power of operators

I Fault: Statements 3 and 4 are in the wrong order

I Failure:
Test-case: on input 1, the program must output 2.
input 1 ... output 8!

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?
Spec: A program that inputs an integer, and outputs 2 ∗ i3.

1: int i;
2: i << cin;
3: i = 2 * i;
4: i = exp(i,3);
5: cout << i;

I Conceptual mistake: confusing the binding power of operators

I Fault: Statements 3 and 4 are in the wrong order

I Failure:
Test-case: on input 1, the program must output 2.
input 1 ... output 8!

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

Validation vs. Verification

I Validation: Have we made the right product; compliance with
the intended usage
often: user-centered, manual process, on the end product

I Verification: Have we made the product right; compliance
between artifacts of different phases
often: artifact-driven, formalizable and mechanizable process
among all phases

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

Testing

I Planned experiments to:

1. reveal bugs (turn faults into failures, test to fail),

Testing can show the presence of bugs, but not the
absence. [Dijkstra]

2. gain confidence in software quality (test to pass)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

RIP Process

I Reachability: triggering the statements containing the fault,

I Infection: triggering the fault to produce incorrect state

I Propagation: carrying the fault to the visible behavior
(output)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

I Test case (the plan):
input (execution condition / behavior) and output (pass / fail
conditions)

I Testing: planning and executing test-cases (how?).

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What?

Quality Attributes

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Outline

Organization

Why?

What?

How?, When?

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Testing

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Testing

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

I Testing: planning and executing test-cases.

1. designing test-cases (manual, automatic: models, formal
specs),

2. executing them (manual or automatic: scaffolding, fixture),
3. distinguishing failures or correct executions (manual: experts,

automatic: oracles, models)
4. giving feed back for debugging / changing specification

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Aspects of Testing

I Functional testing:
assumption: software is a function from inputs to outputs
covering aspects of specification
suitable for black-box testing (but can be enhanced with
information from the code)

+ program independent: tests can be planned early
+ tests are re-usable
- gaps: untested pieces of software
- redundancies: the same statements may be tested several times

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Functional Testing: Mortgage Example

Spec. Write a program that takes
three inputs: gender (boolean), age([18-55]), salary ([0-10000])
and output the total mortgage for one person

Mortgage = salary * factor,
where factor is given by the following table.

Category Male Female
Young (18-35 years) 75 (18-30 years) 70
Middle (36-45 years) 55 (31-40 years) 50
Old (46-55 years) 30 (41-50 years) 35

From: P.C. Jorgensen. Software Testing: A Craftsmans Approach.

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

An Implementation

Mortgage (male:Boolean, age:Integer, salary:Integer): Integer
if male then
return ((18 ≤ age < 35)?(75 ∗ salary) : (31 ≤ age <
40)?(55 ∗ salary) : (30 ∗ salary))

else {female}
return ((18 ≤ age < 30)?(75 ∗ salary) : (31 ≤ age <
40)?(50 ∗ salary) : (35 ∗ salary))

end if

Is this implementation correct?

No way, 12 bugs!

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

An Implementation

Mortgage (male:Boolean, age:Integer, salary:Integer): Integer
if male then
return ((18 ≤ age < 35)?(75 ∗ salary) : (31 ≤ age <
40)?(55 ∗ salary) : (30 ∗ salary))

else {female}
return ((18 ≤ age < 30)?(75 ∗ salary) : (31 ≤ age <
40)?(50 ∗ salary) : (35 ∗ salary))

end if

Is this implementation correct? No way, 12 bugs!

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Functional Testing

Mortgage (male:Boolean, age:Integer, salary:Integer): Integer
if male then
return ((18 ≤ age < 35)?(75 ∗ salary) : (31 ≤ age <
40)?(55 ∗ salary) : (30 ∗ salary))

else {female}
return ((18 ≤ age < 30)?(75 ∗ salary) : (31 ≤ age <
40)?(50 ∗ salary) : (35 ∗ salary))

end if

Possible test cases:
inputs: representatives from each age range and for each gender
and salary 1,
output: factors as given by the table
(similar to equivalence testing; wait till next sessions!)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Aspects of Testing

I Structural testing:
covering aspects of program
examples: code coverage, branch coverage

+ giving insight to the effectiveness of test
- more complicated than functional testing
- incapable of detecting errors of omission

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Structural Testing

Spec.: input: an integer x [1..216]
output: x incremented by two, if x is less than 50,
x decremented by one, if x is greater than 50, and
50, otherwise.

if x < 50 then
x = x + 1;

end if
if x > 50 then

x = x - 1;
end if
return x

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Structural Testing
if x < 50 then

x = x + 1;
end if
if x > 50 then

x = x - 1;
end if
return x

Test-cases: sufficiently many random inputs until all statements are
at least executed once, manually check the outputs with the spec.

Input Output Pass/Fail
1540 1539 P
2783 2782 P
3222 3221 P
30 31 F

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Structural Testing
First “Debugged” Version:

if x < 50 then
x = x + 2;

end if
if x > 50 then

x = x - 1;
end if
return x

Input Output Pass/Fail
1540 1539 P
2783 2999 P
3222 3221 P
30 32 P

Have we tested enough?

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

Structural Testing

if x < 50 then
x = x + 2;

end if
if x > 50 then

x = x - 1;
end if
return x

Input Output Pass/Fail
49 50 F

Pesticide paradox: debugging old faults may produce new bugs (or
“wake” old bugs up).

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Moral of the Story

Testing aims at covering some (abstract) artifact:

I Functional testing: requirements (logical partitions, formulae,
graphs, trees)

I Structural testing: program (control or data flow graphs)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

How?

Ideal Mix

I Functional and structural testing at various levels (unit,
integration, system)

I Structural measures for the effectiveness of functional
test-cases

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

When?

V Model

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

When?

V Model

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

When?

Boehm’s Curve

requirement designspecification implementation

development

cost

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

When?

Dealing with Bugs

1-4 Putting errors in (producing bugs),

5-7 finding bugs:
I testing
I fault classification
I fault isolation

8 removing bugs

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What Else?

Alternatives

I Static Analysis:
test abstract properties without running the program,
e.g., uninitialized/unused variables, empty/unspecified cases,
coding standards, checking for design (anti)patterns.

+ automatic and scalable for generic and abstract properties;
+ existing powerful tools;
- involves approximation (true negatives and false positives);

complicated (may involve theorem proving) for concrete and
specific properties (proving the abstraction function to be
“correct”)

Mousavi: Software Testing: Introduction

Organization Why? What? How?, When?

What Else?

Alternatives

I Model Checking:
test the state-space for formally specified properties.

+ rigorous analysis, push-button technology;
- not (yet) applicable to many industrial cases (state-space

explosion)

Mousavi: Software Testing: Introduction

	Organization
	Why?
	What?
	How?, When?

