
NP-Complete Problems
With a short and informal introduction to Computability Complexity

Álvaro Moreira
alvaro.moreira@inf.ufrgs.br

Instituto de Informática
Universidade Federal do Rio Grande do Sul
Porto Alegre, Brasil
http://www.inf.ufrgs.br

http://www.inf.ufrgs.br

Contents

Algorithmics - the science of algorithms
Bibliografical References
Bad news in computing
Sometimes We Can’t Do It - Exemples of
Non-computable Problems
How to Prove the Negative Results - The
Church-Turing Thesis
More bad news....

Lower x Upper Bounds
Closed Problems and Algorithmic Gaps
Complexity Theory
NP - short certificates and magic coins
NP Completeness
Polynomial time reduction
Some NP-Complete Problems
Is P = NP?

2/106

Contents
Algorithmics - the science of algorithms
Bibliografical References
Bad news in computing
Sometimes We Can’t Do It - Exemples of Non-computable Problems
How to Prove the Negative Results - The Church-Turing Thesis
More bad news....
Lower x Upper Bounds
Closed Problems and Algorithmic Gaps
Complexity Theory
NP - short certificates and magic coins
NP Completeness
Polynomial time reduction
Some NP-Complete Problems
Is P = NP?

3/106

Algorithmics - the science of algorithms

Putting this 3 lectures in the context of a course on Algorithms we have:

• The good news:

◦ Algorithms and data (getting it done)
◦ Algorithmic methods (getting it done methodically)
◦ The correctness of algorithms (getting it done right)
◦ The efficiency of algorithms (getting it done cheaply)

• The bad news:
◦ Intractability (you can’t always get it done cheaply)
◦ Noncomputability (sometimes it can’ t be done at all!)

4/106

Contents
Algorithmics - the science of algorithms
Bibliografical References
Bad news in computing
Sometimes We Can’t Do It - Exemples of Non-computable Problems
How to Prove the Negative Results - The Church-Turing Thesis
More bad news....
Lower x Upper Bounds
Closed Problems and Algorithmic Gaps
Complexity Theory
NP - short certificates and magic coins
NP Completeness
Polynomial time reduction
Some NP-Complete Problems
Is P = NP?

5/106

Bibliographic References

These slides are based on the following four books:

More suggestions of reading material will be given along the slides!

6/106

Topics to be covered

1. Computability (1st lecture)
◦ Kinds of problem we are interested in
◦ Example of non-computable problems
◦ Nothing interesting about computation is computable
◦ Church-Turing Thesis
◦ Proof that Halting Problem is non-computable

2. Complexity (2nd and 3rd lectures)
◦ Lower and upper bounds of problems
◦ Tractability x Untractability
◦ Problems with tractability status unkown
◦ NP-Complete problems
◦ P=NP?

7/106

Contents
Algorithmics - the science of algorithms
Bibliografical References
Bad news in computing
Sometimes We Can’t Do It - Exemples of Non-computable Problems
How to Prove the Negative Results - The Church-Turing Thesis
More bad news....
Lower x Upper Bounds
Closed Problems and Algorithmic Gaps
Complexity Theory
NP - short certificates and magic coins
NP Completeness
Polynomial time reduction
Some NP-Complete Problems
Is P = NP?

8/106

Bad news in computing...

• These 3 lectures are about the inherent limitations of computing,
such as . . .

◦ . . . the impossibility of solving a problem with a computer or,

◦ . . . the impossibility of solving a problem efficiently

• We concentrates on proven, lasting and robust limitations

• And by ”proven" we mean

mathematically proven!!

9/106

Why to study these limitations?

Why one would care about care about studying or doing research (or
even get informed) on the inherent limitations of computing ?

• To satisfy intellectual curiosity

• To discourage futile efforts

• To encourage development of new paradigms

• To make possible the otherwise impossible

10/106

Discourage of futile efforts

• If a computational problem has been proved to admit no solution
then seeking a solution is pointless

• The same goes for computational problems that do admit solution,
but have been proved to require:

◦ Unreasonable amount of space (say, much larger than the entire known
universe!!), or that take

◦ Unreasonable amount of time (say, a lot more than has elapsed since
the Big Bang!!)

11/106

Rules of the game I

• We concentrate only on precisely defined computational problems

• We won’t focus on problems such as run companies, carry out
medical diagnosis, compose music, find a good match for boyfriend
or girlfriend, etc...

• No one can say, for instance that he/she has developed an algorithm
that solves the problem of running a company because ”running a
company" . . .

. . . is not a precisely defined computational problem!!

12/106

Rules of the game II

We require that a computational problem

1. be associated with a set of legal inputs

2. its solution should work for any input from the set of legal inputs

3. has an infinite set of legal inputs

(1) and (2) above are clear: we need to know the set of possible inputs
to a problem, and the solution should work not only for some of these
possible inputs but for all of them.

But what about requirement (3) ?

13/106

Rules of the game III

If the set of legal inputs of a problem is finite, them the problem always
has a solution!

Example: A problem with a finite set {I1, I2, . . . , IK} of legal inputs,
that should answer only yes (if the input has some property) or no (if
the input doesn’t have some property).

The problem has an algorithm that “contains” a table with the K
answers. The algorithm can be the following:

(1) if input is I1 then output yes and stop;
(2) if input is I2 then output yes and stop;

...
(k) if input is IK then output yes and stop

14/106

Rules of the game IV

We might not know yet which of the 2k possible algorithms is the
correct one. But it certainly exists.

Hence, a problem is interesting for the purposes of investigations on
computability only if it has an infinite set of legal inputs

And finally, is very common in the context of computability (and also of
complexity) to focus on decision problem, i.e, problems that output
only yes or no (or true or false)

15/106

Contents
Algorithmics - the science of algorithms
Bibliografical References
Bad news in computing
Sometimes We Can’t Do It - Exemples of Non-computable Problems
How to Prove the Negative Results - The Church-Turing Thesis
More bad news....
Lower x Upper Bounds
Closed Problems and Algorithmic Gaps
Complexity Theory
NP - short certificates and magic coins
NP Completeness
Polynomial time reduction
Some NP-Complete Problems
Is P = NP?

16/106

The Tilling Problem I

• The problem involves covering large areas using square tiles with
colored edges, such that adjacent edges are monochromatic.

• A tile is a 1 by 1 square, divided into four by the two diagonals, each
quarter colored with some color.

• We assume that the tiles have fixed orientation and cannot be
rotated, and that an unlimited number of tiles of each type is
available

17/106

The Tilling Problem II

The algorithmic problem

• Input: a finite set T of tile
descriptions, and

• Output: “yes" if any finite
area, of any size, can be
covered using only tiles of types
in T, such that the colors on
any two touching edges are the
same. And “no" otherwise.

Given these 3 kinds of tiles we can easily check that it is possible to
cover rooms of any size.

18/106

The Tilling Problem III

If we exchange the bottom colors of tiles (2) and (3) we can see quite
easily that even very small areas cannot be tiled at all.

19/106

The Tilling Problem IV

R.Berger: Undecidability of the Domino Problem. Memoirs of the
American Mathematical Society 66, 72 pp., 1966

Inputs

Each tile type in T is a sequence t = (n, e, s,w) of four symbols, that
identify the colors at the top, right, bottom and left edges of the tile.

A problem input (T , t(0,0)) is a finite set T of tiles types along with a
specification of a distinguished corner tile type t(0,0) ∈ T .

20/106

The Tilling Problem V

Requirements

A tiling is a function f : N×N→ T that tells which tile type is
associated to each square on the infinite quarter-plane.

The requirement of consistency of colors can be written as a pair of
conditions

f(i, j).1 = f(i, j+ 1).3 and f(i, j).2 = f(i+ 1, j).4 ∀i, j > 0

The requirement that the corner tile type t(0,0) be placed in the corner
is expressed formally as

f(0, 0) = t(0,0)

21/106

The Tilling Problem is Undecidable

Definition (The Tilling Problem)

Input:

• 〈T , t(0,0)〉

Output:

• yes, if there is a tiling function f : N×N→ T with f(0, 0) = t(0,0)
satisfying the 2 requirements above

• no, otherwise

22/106

The Word Correspondence Problem I

The Word Correspondence Problem, involves forming a word in two
different ways.

The inputs for the problem are two groups of words over some finite
alphabet. Call them the Xs and the Ys.

The problem asks whether it is possible to concatenate words from the
X group, forming a new word, call it Z, so that concatenating the
corresponding words from among the Ys forms the very same
compound word Z.

23/106

The Word Correspondence Problem II

Fig. (a) has an example with 5 words in each group, where the answer
is yes. Concatenating the words in the sequence 2, 1, 1, 4, 1, 5 from
either the Xs or the Ys yields the same word, aabbabbbabaabbaba.

But the input described in (b), which is obtained from (a) by removing
the 1st letter from the 1st word of each group, does not admit any such
choice. Its answer is therefore no.

24/106

Variations

The Word Correspondence Problem is undecidable !

The cause of its undecidability seems to be the fact that there is no
bound on the size of sequence of words

But variants in which it seems that there are even more cases to check
are decidable

For instance, a variant that imposes no restriction on the way choices
are made from the Xs and Ys - even the number of words selected need
not be the same - is decidable

Problems that look very similar might have computability status very
different (the same applies to tractability status)

25/106

The Halting Problem

The (Program) Halting Problem is undecidable

Input: program P and its input X

Output: Does P terminate when executed with input X? (yes/no?)

26/106

Program Verification

The Problem of Program Verification is undecidable

Input: specification φ about the input, and ψ about the output, both
expressed in some logic, and a program P

Output: if the input is such that is has property given by φ, does the
output satisfies property ψ after the execution of P? (yes/no?)

27/106

Nothing About Computing is Computable!

There is a remarkable result, called Rice’s theorem, which shows that
not only we cannot verify programs or determine their halting status,
but ...

Nothing interesting about programs is computable!!

Interesting is a property of what the program does and not of the
particular form that solution takes.

H. G. Rice, Classes of Recursively Enumerable Sets and Their Decision
Problems, Trans. Amer. Math. Soc. 74 (1953), pp. 358–66.

28/106

Contents
Algorithmics - the science of algorithms
Bibliografical References
Bad news in computing
Sometimes We Can’t Do It - Exemples of Non-computable Problems
How to Prove the Negative Results - The Church-Turing Thesis
More bad news....
Lower x Upper Bounds
Closed Problems and Algorithmic Gaps
Complexity Theory
NP - short certificates and magic coins
NP Completeness
Polynomial time reduction
Some NP-Complete Problems
Is P = NP?

29/106

How to prove that a problem is non-computable? I

Investigation on (non-)computability started a long time ago in the
context of Logics and Mathematics when there were no computers!

It was necessary, of course, to have an agreement of what effectively
computable was and how to express a computation

Alan Turing, in 1936, proposed a computer machine and proved that
no machine could be built to solve the Validity Problem for FOL (a
decision problem)

Turing, A.M. On Computable Numbers, with an Application to the
Entscheidungs problem. Proceedings of the London Mathematical
Society. 2 (published 1937). 42: 230–265

30/106

How to prove that a problem is non-computable? II

The Church-Turing Thesis equates the intuitive notion of effectively
computable with the formal notion of computable with a Turing
Machine (or any other equivalent computational model)

31/106

Church-Turing Thesis

The Church-Turing Thesis cannot be proved (Why?)

The Thesis stands firm because:

• Any other computational model invented has been proved to be
equivalent to all the others already invented

• So far the thesis has not been disproved (what would be necessary to
prove it false?)

The Theory of Computability (and of Complexity) has been built around
Turing Machines

32/106

Proving the Undecidability of the Halting Problem I

We have to show that it is impossible to write a program in a given
programming language L that solves the halting problem

After we have proved that one might still think that result depends on
the specific language L ...

....and that if we change the programming language we can eventually
come up with a program to decide the halting problem

But since programming languages are equivalent to Turing Machines,
by the Church Turing Thesis we can conclude that the Halting
problem is undecidable

33/106

Reading

Chapter 2 - Sometimes We Can’t Do It from the book
Computers Ltd - What they really can’t do, by David Harel

Chapter 8 - Noncomputability and Undecidability from the book
Algorithmics: the Spirit of Computing, by David Harel

Solving the Unsolvable, by Moshe Y. Vardi. Communications of the
ACM, Vol. 54 No. 7, Page 5. July 2011

34/106

Solving the Unsolvable

From “Solving the Unsolvable", by Moshe Vardi:

I believe this noteworthy progress in proving program
termination ought to force us to reconsider the meaning of
unsolvability In theory, unsolvabilty does impose a rigid
barrier on computability, but it is less clear how significant
this barrier is in practice most real-life programs, if they
terminate, do so for rather simple reasons, because programmers
almost never conceive of very deep and sophisticated reasons for
termination. Therefore, it should not be shocking that a tool
such as Terminator can prove termination for such
programs.

35/106

