
Customizable Mutation Testing

for Industrial Environments

Ali Parsai

University of Antwerp
Middelheimlaan 1

2020 Antwerpen, Belgium
ali.parsai@uantwerpen.be

Abstract

After the introduction of agile development techniques, the focus on testing has shifted more
on the quality of the test suite. Consequently, the metrics adopted to evaluate such quality
have become more important for both industry and academia. For the industry, it is a practical
means to improve the effectiveness of the testing practices; for the academia, it is important
to assess the validity of agile methods and comparison of different testing strategies. Mutation
testing provides a repeatable and scientific approach to measure the quality of the test suite [4],
and it is proven to simulate the faults realistically [1, 5]. Although the idea of mutation testing
has been introduced in the late 1970s, it has not found widespread use in real scenarios due
to its computationally expensive nature. Even though mutation testing is proven by academic
research to be the strongest approach to quantify test suite quality, difficulties of this technique
have caused simple code coverage metrics (e.g., statement and branch coverage) to become the
de facto standard test suite quality metric in industry. Therefore to be practical in industrial
settings, it is crucial to smoothen the integration of mutation testing in the industrial environ-
ment, and make use of the benefits of this technique [7]. However, this is not an easy task for
four reasons. First, the overall process of building and testing the software is often complicated,
leading to difficulties in the integration of mutation testing tools. Second, there is a lack of
mature mutation testing tools and as consequence major build management systems have not
developed common standards or requirements for such tools. Third, there is a lower demand for
mutation testing due to a lack of background knowledge about the advantages it offers. For this
reason, the development of new mutation testing tools is hindered, and their smooth integration
is unlikely. Therefore, introduction of a tool capable of easy integration is an important step in
popularizing the use of mutation testing.

To overcome the problem of integration, we propose a solution based on the Cha-Q1 infras-
tructure2 [3]. The Cha-Q environment aims to strike a balance between agility and reliability
through change-centric quality assurance tools. This environment offers a first-class representa-
tion of software artifact changes. Making use of this infrastructure allows easy integration with
compatible continuous integration tools, and easier transformation into new settings supported
by Cha-Q infrastructure.

Our proposal is (i) to create a mutation testing tool on top of Cha-Q meta model, (ii) use
ChaQeko/X (a tool under development in Cha-Q). ChaQeko/X is a program transformation
tool based on Ekeko/X [2]. Its main characteristic is to be template-driven. We exploit this
characteristic to provide customizable mutation operators, and adaptable to the needs of the
developer.

1Change-centric Quality Assurance
2http://soft.vub.ac.be/chaq/

http://soft.vub.ac.be/chaq/


Customizable Mutation Testing for Industrial Environments Parsai

One important aspect of mutation testing is the use of mutation operators to generate
mutants. These mutation operators are usually based on a simple fault model. However, this
simplicity usually means that lots of mutable statements are found, and as a result lots of
mutants are generated. This leads to adverse effects on performance of this procedure, and
does not allow mutation testing to scale to larger software.

The use of simple mutation operators to generate the faults is justified based on two fun-
damental assumptions. First, the Competent Programmer Hypothesis states that a competent
developer will only make mistakes that are solvable by making few syntactic changes [4]. Second,
the Coupling Effect Hypothesis states that “complex mutants are coupled to simple mutants
in such a way that a test data set that detects all simple mutants in a program will also detect
a large percentage of the complex mutants” [6]. Even though both these hypotheses are true
for simpler faults, the more complex the faults become, the more difficult it gets to detect and
solve as them. Thus, there is a need for more complex fault models to be introduced to tackle
this problem. Using ChaQeko/X allows us to give the developer the option to define their own
mutation operators. These mutation operators can be more complex than the simple mutation
operators that are being widely used. This also means that they will generate less mutants,
and they can target types of faults that are relevant to the project itself rather than the generic
faults.

References

[1] J. Andrews, L. Briand, and Y. Labiche. “Is mutation an appropriate tool for testing exper-
iments? [software testing]”. In: Proceedings of 27th International Conference on Software
Engineering, 2005 (ICSE 2005). 2005, pp. 402–411.

[2] C. De Roover and K. Inoue. “The Ekeko/X Program Transformation Tool”. In: Source Code
Analysis and Manipulation (SCAM), 2014 IEEE 14th International Working Conference
on. 2014, pp. 53–58.

[3] C. De Roover, C. Scholliers, V. Jonckers, J. Prez, A. Murgia, and S. Demeyer. “The Im-
plementation of the Cha-Q Meta-Model: A Comprehensive, Change-Centric Software Rep-
resentation”. In: In Electronic Communications of the European Association of Software
Science and Technology, Post-Proceedings of the 8th International Workshop on Software
Quality and Maintainability (SQM14) 65 (2014).

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. “Hints on Test Data Selection: Help for
the Practicing Programmer”. In: Computer 11.4 (Apr. 1978), pp. 34–41.

[5] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser. Are Mutants a
Valid Substitute for Real Faults in Software Testing? Tech. rep. UW-CSE-14-02-02. Uni-
versity of Washington, 2014.

[6] A. J. Offutt. “Investigations of the Software Testing Coupling Effect”. In: ACM Trans.
Softw. Eng. Methodol. 1.1 (Jan. 1992), pp. 5–20.

[7] B. H. Smith and L. Williams. “On guiding the augmentation of an automated test suite
via mutation analysis”. In: Empirical Software Engineering 14.3 (2009), pp. 341–369.

2


