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Abstract

This paper proposes a formal framework for the design of
real-time shared data-space systems. The proposed method
separates the concerns of functionality, behavior, and tim-
ing. This work exploits the idea of separation of concerns at
the specification and design level, and it establishes a robust
theoretical basis that allows rigid analysis and verification
of (timed) designs.

1 Introduction

Separating different concerns in software design has
been proposed in several classic computer science texts
since the very beginnings of this discipline. Providing ab-
stract and simple formalisms that are tailor-made for a sin-
gle concern of requirement specification, design, or pro-
gramming, seems to be of an overwhelming importance.
The idea of using these tailor-made formalisms can help in a
more focused design method that enables designers to con-
centrate on each aspect of a design separately. Furthermore,
they will ease changing an aspect without being directly in-
volved with other ones. Also, separation of concerns fa-
cilitates reuse of each aspect in other specialized designs.
Recently, a renewed interest appeared in separating differ-
ent concerns and providing appropriate ways of focusing on
each concern. A distinguished example of this trend can
be seen in Post Object Oriented Programming languages
(POPs) [7, 9] and in particular in the Aspect Oriented Pro-
gramming (AOP) [7] and Multi-Dimensional Separation of
Concerns [14] methods.

This paper takes a step toward this ultimate goal by pro-
viding a formal framework of separation of concerns for
real-time shared data-space systems. It benefits from pre-
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vious research on the functionality / behavior modelling
paradigm [3] and extends it to functionality / timing / behav-
ior. The novelty of this work compared to the approaches
mentioned above is that, first, it exploits the idea of separa-
tion of concerns at the specification and design level, and,
second, it establishes a robust theoretical basis that allows
rigid analysis and verification of (timed) designs.

In our approach, the basic functionality of a system is
designed using an abstract formal model of computation
called GAMMA [2], operating on a shared data-space that
is modeled by a multiset. Timing information is added to
GAMMA functionalities in the form of separate intervals.
Composed behavior of the system is expressed in a coor-
dination language named schedules, specifying the order
of basic computations using parallelism, true concurrency,
synchronization, etc.

The rest of this paper is organized as follows. Section 2
introduces the preliminary concepts of our data and com-
putation model. Section 3 defines the theory of Timed-
GAMMA which serves as a model for timed functionality.
Section 4 presents our coordination language for ordering
the behavior of Timed-GAMMA programs. Subsequently,
Section 5 uses the introduced theory to model an academic
case study, a control system for a steam boiler. Section 6
presents an overview on related work, and finally, Section 7
gives concluding remarks and shows directions of ongoing
research.

2 Preliminaries: Multisets and Computation

Definition 1 (Multiset) A multiset is a set that allows mul-
tiple occurrences of an element. It is defined in terms of a
total function from a set of elements U (for universe) to the
set of natural numbers IN presenting their number of occur-
rence (cardinality).

We use e @− M to denote that the element e has a cardinal-
ity greater than zero in multiset M . To define a multiset by
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enumerating its members (extensional presentation), we use
the notation [m0,m1, . . .], where each element is repeated
as often as its cardinality. The empty multiset is denoted
by �| . As basic operations and relations, we use multisub-
set (v), union (t), intersection (u), addition (�), and sub-
traction (�) of multisets. For a precise treatment of these
operations and their properties, see [11].

In our theory, computations are modelled by rewriting
multisets using a multiset of concurrent substitutions (com-
putations).

Definition 2 (Substitution and Computation) For multi-
sets N and N ′, the expression N/N ′ is called a substitution
of N for N ′ (denoted by α, α1, etc.). A computation is a
multiset of substitutions (denoted by σ, σ1, etc.).

Intuitively, applying a computation with a single substi-
tution σ = [N/N ′] to M should result in taking N ′ from
M and putting back multiset N . In this operation, some
parts of the multiset may be only temporarily taken away
by N ′ and put back by N again (the read part). The parts
that are permanently removed and add by a substitution are
called take and put parts, respectively. We lift this intu-
ition to general computations, as follows. The read part of
a computation is the union of read parts of its substitutions
because a single copy of an element can be read by several
substitutions concurrently. For the take or put parts, differ-
ent copies of the elements are removed or added by the indi-
vidual substitutions. We formalize this intuition by defining
the read , take, and put parts of a computation inductively:

read(�| )
4
= put(�| )

4
= take(�| )

4
= �|

read([N/N ′] � σ)
4
= (N u N ′) t read(σ)

take([N/N ′] � σ)
4
= (N ′ � read([N/N ′])) � take(σ)

put([N/N ′] � σ)
4
= (N � read([N/N ′])) � put(σ)

Application of a computation σ to a multiset M is defined
as:

M(σ)
4
=

{

(M � take(σ))
�put(σ) if read(σ) � take(σ) v M

M otherwise

In order to model parallelism in our GAMMA semantics,
we introduce a notion of independence on computations.
Two computations are independent if both can be applied
simultaneously or in an arbitrary order.

Definition 3 (Independence) Two computations σ0 and σ1

are independent with respect to a multiset M , denoted by
M |= σ0 ./ σ1, if and only if read(σ0 � σ1) � take(σ0 �

σ1) v M .

As a consequence, two computations are independent if and
only if both can find enough shared copies of elements to
read and enough different copies of elements to take.

For the sake of brevity, we do not present details of mul-
tiset structure in this paper. We only assume that multiset
elements are members of a basic set, closed under functions
of a given logical structure.

Example 1 (Computations and Independence)
Consider the computations σ0 = [[0]/[0, 1]] and
σ1 = [[0]/[0, 2] , [2]/[1]]. The first computation re-
moves [0, 1] from the multiset and places the element [0]
back. Thus, we call [0] the read part and [1] the take part
of this computation. The put part of this computation is the
empty multiset. Similarly, for the second computation, [0],
[2, 1] and [2] are the read , take and put parts, respectively.
Note that, for the second computation, 2 is not considered
in the read part according to Definition 2. This is in
line with the intuition that the two substitutions in this
computation are parallel and thus application of one should
be independent of the other.

For the multiset M0 = [0, 1, 1, 2], it holds that M0 |=
σ0 ./ σ1. However, the independence of σ0 and σ1 holds for
none of the two multisets M1 = [0, 1, 2] and M2 = [0, 1, 1].
This fact matches the intuition behind the independence re-
lation. For M1, application of σ0 prohibits (application of)
the second substitution in σ1. Since application of the first
substitution of σ1 to M2 is not possible σ0 and σ1 are not
independent with respect to M2.

3 Timed-GAMMA

3.1 Syntax of Timed-GAMMA

Figure 1 defines the syntax of Timed-GAMMA. A
Timed-GAMMA program consists of a program (defining
un-timed functionality) and timing information. A program
consists of a name and a non-empty set of rules, each rewrit-
ing the content of the shared multiset. Each rule consists of
a name and a (possibly empty) set of terms in the left- and
right-hand side of the substitution arrow 7→ and a condition
part that are to be valuated by multiset content. A multi-
set expression (MultisetExp) is a list of expressions built
on a set of variables using the previously mentioned logical
structure and conditions (Cond ) are assumed to be propo-
sitions (containing variables) defined over the same logical
structure.

Timing constraints are added to the program definition
to represent an estimation of rule execution time. Such a
timing estimation relates a rule to an interval representing
the minimum and maximum time needed to perform a com-
putation of this rule. This time is relative to the point from
which the rule is scheduled for execution. A basic time do-
main Time with equality, an addition operation + with unit
element 0, and a total ordering < with least element 0 is
assumed. We extend this basic time domain with an infinity
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Program ::= ProgramName = {Rules}
Rules ::= Rule | Rule,Rules

Rule ::= RuleName =
MultisetExp 7→ MultisetExp ⇐ Cond

TimedProgram::= Program Timing

Timing ::= ε | ,TConstraint Timing

TConstraint ::= TRuleName = Interval

Interval ::= [Time,Time] | (Time,Time]
| [Time,Time∞) | (Time,Time∞)

Figure 1. Abstract Syntax of Timed-GAMMA

element to obtain Time∞ in a standard way. We refer to
the lower and upper bound of an interval I with lb(I) and
ub(I), respectively.

Example 2 (Mutual Exclusion) To illustrate the syntax of
timed-GAMMA programs, we present a program that mod-
els processes competing to enter a critical section. The sys-
tem consists of n processes numbered from 1 to n. Mutual
exclusion is maintained by claiming a shared token which
is assumed to be some constant integer greater than n:

ME = {
Enter = Token, i 7→ Token + i ⇐ 1 ≤ i ≤ n,
Leave = Token + i 7→ Token, i ⇐ 1 ≤ i ≤ n},
TEnter = [tminAcq, tmaxAcq]

The above simple program consists of two rules; rule
Enter models a process claiming the token and entering
the critical section and Leave models leaving the critical
section and putting the token back in the multiset. Rule
Enter is assumed to have a specific timing specification but
the timing of Leave is left unspecified, meaning that the
process can remain in the critical section for an arbitrary
time.

3.2 Semantics of Timed-GAMMA

The semantics of Timed-GAMMA is presented in two
parts. The first part, presented in Figure 2, shows the ba-
sic timed-computation and termination of a rule and, based
on that, the second part in Figure 3 defines the behavior
of Timed-GAMMA programs. In the given semantics, the
state 〈r,M, T 〉 consists of the rule r, the multiset M (of
shared data), and the multiset of scheduled tasks T (an ex-
tension of the computation notion to timed settings). A task
α@t : I is the substitution α together with the elapsed pro-
cessing time t (the duration that the task has been active and
running till now), and the estimated execution time interval
I . The transitions in the given semantics are either of the

(RuleTerm)
¬∃v M,v ∝ r

〈r,M,�| 〉√1

(RuleSched)
M,v ∝ r

〈r,M,�| 〉 0→1 〈r,M, [α@0 : r.I]〉
where for a rule r = m0 7→ m1 ⇐ c, α = v[m1]/v[m0]

(RuleComp)
t ∈ I

〈r,M, [α@t : I]〉 [α]→1 〈r,M([α]),�| 〉

(TimePass)
t + t′ ∈ I ∨ t + t′ ≤ lb(I) t′ > 0

〈r,M, [α@t : I]〉 t′→1 〈r,M, [α@t + t′ : I]〉

Figure 2. Semantics of Basic Timed Function-
ality

form t→1 (where t can range over the basic time domain

Time) or
[α]→1 , where α ranges over substitutions. A basic

timed-computation is divided into three phases.
The first phase consists of scheduling a task (see rule

(RuleSched)). This is only possible if there exists a valua-
tion v that both satisfies the condition and valuates the left-
hand-side expression of rule r to be a part of the multiset
(denoted by M, v ∝ r). The scheduling of a task is indi-
cated by a transition 0→1 . We abstract from the time needed
for finding an appropriate valuation. Alternatively, this time
could be added to the transition associated with scheduling
a task. To refer to the interval I associated with rule r, we
use r.I . If there is no interval defined for r, r.I results in
[0,∞). This gives us a timed semantics for GAMMA pro-
grams in which no assumptions have been made about the
timing of the rule.

Example 3 (Scheduling a Task) Consider program ME

of Example 2 with initial multiset M = [1, . . . , n,Token].
One possible scheduling of rule Enter is the following:
〈Enter ,M,�| 〉 0→1 〈Enter ,M, [α@0 : I]〉,
with α = [Token + 2]/[Token, 2] and I = TEnter .

For the time being, we assume that r.I works as a func-
tion. Nevertheless, this assumption could be relaxed by al-
lowing several intervals associated to a rule, and hence r.I
returning a set of time points which is not necessarily a sin-
gle convex interval. This relaxed assumption would not re-
quire major change in our semantics. However, for sim-
plicity we assume the single interval time paradigm from
now on. Another useful extension is to declare the bounds
of intervals as functions of system state. Because the infor-
mation for determining the execution time is available at the
task scheduling time, this is also a straightforward extension
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to our model.
The second phase of basic computation is spending (pro-

cessor) time on a computation, using rule (TimePass). Fi-
nally, the third phase is performing (committing) a compu-
tation via (RuleComp), which results in substituting the left-
hand-side by the right-hand-side valuation in the multiset.

The division of basic computation in three phases pro-
vides the possibility to put further details in each of these
phases (e.g. specifying scheduling policy, providing timing
information for distributed scheduling or commitment).

Rule (RuleTerm) is dedicated to represent the possibility
of termination of a rule when it cannot schedule any new
task and does not have any active task to perform.

The second part of the semantics, given in Figure 3, spec-
ifies the general chaotic behavior of Timed-GAMMA pro-
grams by composing behavior of rules in all possible or-
ders and all possible levels of true concurrency. In this se-
mantics, the states are of the form 〈R,M, T 〉 where R is a
timed-GAMMA program and M and T are as before. We

use
√

, t→ and σ→ instead of
√

1, t→1 and
[α]→1 , respec-

tively. Rule (ProgTerm) extends the termination of a single
rule to termination of a program. It is worth mentioning
that in the context of a program, rule termination is not nec-
essarily permanent; a terminated rule may become enabled
later due to activity of other rules. Only if all rules termi-
nate, termination becomes permanent. Rules (ProgComp0)
and (ProgComp1) specify how a Timed-GAMMA program
can perform computations. (ProgTime0) and (ProgTime1)
specify spending time on execution of computations. The
above four rules provide an abstraction from the true level
of concurrency. The rule (ProgSched) shows that a program
can schedule a new task if it can be scheduled by one of its
rules and it is independent from the current context of paral-
lel tasks (where the independence relation between two task
multisets means independence of the multiset of their re-
spective computations). The semantics of Timed-GAMMA
programs is the smallest transition relation satisfying the
above transition rules. Note that the absence of an indepen-
dence check in the premise of rules such as (ProgComp1)
cannot introduce inconsistency because states with incon-
sistent task set are not reachable (since (ProgSched) checks
consistency in the introduction of new tasks and all other
rules preserve the consistency of task sets).

Example 4 (Mutual Exclusion, Revisited) Consider the
program in Example 2. If the program starts from the initial
multiset that contains no process in the critical section with
only one token, i.e., the multiset M = [1, . . . , n,Token],
then the abstract behavior of the program (defined in Figure
3) maintains the mutual exclusion property. This is due to
the fact that, on one hand, for a multiset containing one
token, any two computations resulting from rule Enter

are not independent. On the other hand, the rule Enter is

disabled when there is no token in the multiset.
However, the abstract behavior of this program does not

maintain desired liveness properties, preventing individual
starvation, for example, not even if we specify a maximum
timing for the Leave rule. To enforce such properties, we
need to coordinate the execution of rules. We do this by
defining a coordination language for rules in the next sec-
tion.

We separated the two parts of the semantics in order to
re-use the first part in both defining the chaotic behavior of
Timed-GAMMA programs (the second part) and also coor-
dinated behavior of schedules (Section 4). In other words,
the first part of the semantics serves to define the atomic
units of functionality. Technically speaking, one can re-
place this particular model of timed functionality with an
operational semantics of another functionality model (say,
JavaSpace methods, or even a hierarchy of interface ser-
vices), and benefit from the specification model presented
in the remainder. In such cases, care should be taken in
order not to loose the orthogonality in the model as it is
presented here.

4 Schedules

The aim of our coordination language, named schedules,
is to define the correct ordering, synchronization, and in-
teraction of basic timed functionalities. Due to our design
philosophy, the aspect of coordination should be kept or-
thogonal w.r.t. timing to the largest possible extent. Thus,
we assume a timed functionality model and use it as the ba-
sis of our coordination model. Hence, a schedule does not
add explicit information about timing and functionality.

4.1 Syntax of Schedules

The syntax of our language is specified in Figure 4.
RuleName is the notation to adopt Timed-GAMMA rules
as the building blocks of a Schedule . The rule-conditional
operator y is used to provide different strategies based on
whether or not a rule can be scheduled. Sequential composi-
tion of schedules is denoted by ;. Abstract parallel composi-

Schedule::= RuleName | Schedule ; Schedule

| RuleName y Schedule[Schedule]
| Schedule || Schedule | Schedule ||| Schedule

| µRecursionVar . Schedule | RecursionVar

Figure 4. Syntax of Schedules

tion (||) allows for both concurrent and serialized execution
of components (to represent the cases where there may or
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(ProgTerm)
∀r∈R 〈r,M,�| 〉√1

〈R,M,�| 〉√ (ProgComp0)
r ∈ R 〈r,M, [α@t : I]〉 [α]→1 〈r,M ′,�| 〉
〈R,M, [α@t : I] � T 〉 [α]→〈R,M ′, T 〉

(ProgComp1)
〈R,M, T0〉 σ0→1 〈R,M ′

0, T
′
0〉 〈R,M, T1〉 σ1→1 〈R,M ′

1, T
′
1〉

〈R,M, T0 � T1〉 σ0�σ1→ 〈R,M(σ0 � σ1), T
′
0 � T ′

1〉

(ProgTime0)
r ∈ R 〈r,M, [α@t : I]〉 t′→1 〈r,M, [α@t + t′ : I]〉 t′ > 0

〈R,M, [α@t : I] � T 〉 t′→〈R,M, [α@t + t′ : I] � T 〉

(ProgTime1)
〈R,M, T0〉 t→〈r,M, T ′

0〉 〈R,M, T1〉 t→〈R,M, T ′
1〉 t > 0

〈R,M, T0 � T1〉 t→〈R,M, T ′
0 � T ′

1〉

(ProgSched)
r ∈ R 〈r,M,�| 〉 0→1 〈r,M, [α@0 : I]〉 M |= [α@0 : I] ./ T

〈R,M, T 〉 0→〈R,M, [α@0 : I] � T 〉

Figure 3. Semantics of Timed-GAMMA: Abstract Behavior of Programs

may not be enough resources for real concurrency). Strict
parallel composition (|||) forces the participating compo-
nents to run concurrently (provided that execution is pos-
sible at all components and that independence conditions
are satisfied). The recursion operator µ is used to make re-
cursive schedules (µx.s(x)) explicitly. Only schedules in
which all recursion variables are bound by µ are of interest
in this paper. In the rest of this paper, we usually define a
name for schedules. These names serve as a syntactic short-
hand for the defined schedules.

In scheduling rules, there might be a need to strengthen
the condition under which the rule r = m0 7→ m1 ⇐ c
is enabled with an additional condition c′. Instead of intro-
ducing a new rule r′ = m0 7→ m1 ⇐ c ∧ c′ in such cases,
we simply write c′ B r in the schedules.

Example 5 (A Schedule for Mutual Exclusion) A simple
schedule for the timed-GAMMA program given in Example
2 is the following:
Enter j = (j = i) B Enter

Leavej = (j = i) B Leave

RoundRobin = µX.((Enter 1 ; Leave1) ; . . . ; (Entern ;
Leaven)) ; X

This schedule guarantees progress and absence of indi-
vidual starvation if an upper bound for duration of Leave

is specified. This fact can be derived from the semantics of
the next subsection.

4.2 Semantics of Schedules

Figure 5 shows the first set of semantic rules for the
timed-coordination language. As in the semantics of
Timed-GAMMA, these rules link the semantics of single
rule execution to the semantics of schedules (coordination

terms). However, in the coordination semantics, there is
a tight relationship between coordination terms and sched-
uled tasks (for example, to check synchronization require-
ments of tasks with similar substitutions w.r.t. parallel and
sequential compositions; e.g. in a schedule like s || (s ; t)).
Hence, we also attach scheduled tasks of each coordina-
tion term to its respective syntactic expression (see rule
(CoordSched)). Also observe that, in rule (CoordComp), a
rule, after committing a computation, is replaced by the rule
skip, where skip is defined to be the rule skip = ε 7→ ε ⇐
false, i.e. a rule that cannot be scheduled.

So, in the given semantics, the state 〈s,M, T 〉 contains
s as the coordination expression that is possibly augmented
with scheduled tasks (substitution, timing, and interval), M
is the data multiset, as before, and T is the multiset of ac-
tive tasks, as in semantics of Timed-GAMMA. Note that the
multiset of tasks can be derived from the annotated sched-
ules, too, but we make it explicit in the state for readability
and consistency (although we could require in all seman-
tic rules that the annotated task sets should be the same as
the tasks in T , this assumption is not necessary for consis-
tency of our semantics). The schedule composition opera-
tors are defined as follows, where the transition

χ→ denotes
scheduling a task, passage of time or performing a compu-
tation (χ is a variable that ranges over the time domain and
computations).
Rule Conditional Rules (RC0) to (RC3) define the seman-
tics for the rule-conditional operator. Expression r y s[t]
can schedule a task when either the condition rule r is en-
abled and the first argument s can schedule a task, or when
r terminates (is disabled at the moment) and t can sched-
ule a task. Obviously, it terminates when none of the above

5



(CoordRuleTerm)
〈r,M,�| 〉√1

〈r,M,�| 〉√ (CoordSched)
〈r,M,�| 〉 0→1 〈r,M, [α@0 : I]〉

〈r,M, T 〉 0→〈r[α@0 : I],M, [α@0 : I]〉

(CoordTimePass)
〈r,M, [α@t : I]〉 t′→1 〈r,M, [α@t + t′ : I]〉 t′ > 0

〈r[α@t : I],M, [α@t : I]〉 t′→〈r[α@t + t′ : I],M, [α@t + t′ : I]〉

(CoordComp)
〈r,M, [α@t : I]〉 [α]→1 〈r,M ′,�| 〉

〈r[α@t : I],M, [α@t : I]〉 [α]→〈skip,M ′,�| 〉

Figure 5. Semantics of Timed-Coordination: Basic Computation and Termination

cases are possible:

(RC0)
¬(〈r,M, T 〉√) 〈s,M, T 〉 0→〈s′,M, T ′〉

〈r y s[t],M, T 〉 0→〈s′,M, T ′〉

(RC1)
〈r,M, T 〉√ 〈t,M, T 〉 0→〈t′,M, T ′〉

〈r y s[t],M, T 〉 0→〈t′,M, T ′〉

(RC2)
¬(〈r,M, T 〉√) 〈s,M, T 〉√

〈r y s[t],M, T 〉√

(RC3)
〈r,M, T 〉√ 〈t,M, T 〉√

〈r y s[t],M, T 〉√

Sequential Composition

(S0)
〈s0,M, T 〉 χ→〈s′0,M ′, T ′〉

〈s0 ; s1,M, T 〉 χ→〈s′0 ; s1,M
′, T ′〉

(S1)
〈s0,M, T 〉√ 〈s1,M, T 〉 χ→〈s′1,M ′, T ′〉

〈s0 ; s1,M, T 〉 χ→〈s′1,M ′, T ′〉

(S2)
〈s0,M, T 〉√ 〈s1,M, T 〉√

〈s0 ; s1,M, T 〉√

Abstract Parallel Composition Rules (P0) to (P3) specify
the semantics of the abstract parallel composition operator.
This type of parallel composition does not enforce concur-
rent execution of tasks and allows them to be performed
sequentially. In particular, rules (P0) and (P1) specify how
two sides of a parallel composition can evolve individually.
The side condition of these rules assures that the task mul-
tiset remains consistent if either of the two sides schedules
a new task. (P2) specifies concurrent execution of the two
sides by allowing them to spend time synchronously. Rule
(P3) represents concurrent commitment of tasks.

(P0)
〈s0,M, T0〉

χ→〈s′0,M ′, T ′
0〉 M ′ |= T ′

0 ./ T1

〈s0 || s1,M, T0 � T1〉
χ→〈s′0 || s1,M

′, T ′
0 � T1〉

(P1)
〈s1,M, T1〉

χ→〈s′1,M ′, T ′
1〉 M ′ |= T0 ./ T ′

1

〈s0 || s1,M, T0 � T1〉
χ→〈s0 || s′1,M

′, T0 � T ′
1〉

(P2)

〈s0,M, T0〉 t→〈s′0,M, T ′
0〉

〈s1,M, T1〉 t→〈s′1,M, T ′
1〉 t > 0

〈s0 || s1,M, T0 � T1〉 t→〈s′0 || s′1,M, T ′
0 � T ′

1〉

(P3)

〈s0,M, T0〉 σ0→〈s′0,M0, T
′
0〉

〈s1,M, T1〉 σ1→〈s′1,M1, T
′
1〉

〈s0 || s1,M, T0 � T1〉 σ0�σ1→
〈s′0 || s′1,M(σ0 � σ1), T

′
0 � T ′

1〉

(P4)
〈s0,M, T 〉√ 〈s1,M, T 〉√

〈s0 || s1,M, T 〉√

Strict Parallel Composition Strict parallelism only differs
from the abstract one in that it does not allow one compo-
nent to prohibit or delay the other one in execution. In other
words, it models real concurrency in which composed pro-
cesses perform their behavior independent of each other un-
der some global consistency conditions. To model this type
of composition, rules (P0) and (P1) are restricted to allow
time passage only when one of the parties cannot perform
an action. Thus, tasks are forced to spend their computation
time together. We only rewrite (P0) which is decomposed
into three rules (SP0), (SP01), and (SP02) here. The com-
plete semantics of strict parallelism has three similar rules
instead of (P1) and also copies of (P2) to (P4):

(SP0)
〈s0,M, T0〉 0→〈s′0,M, T ′

0〉 M |= T ′
0 ./ T1

〈s0 ||| s1,M, T0 � T1〉 0→〈s′0 ||| s1,M, T ′
0 � T1〉

(SP1)
〈s0,M, T0〉 σ→〈s′0,M ′, T ′

0〉
〈s0 ||| s1,M, T0 � T1〉 σ→〈s′0 ||| s1,M

′, T ′
0 � T1〉

(SP2)
〈s0,M, T0〉 t→〈s′0,M, T ′

0〉 disabled(〈s1,M, T1〉, T0)

〈s0 ||| s1,M, T0 � T1〉 t→〈s′0 ||| s1,M, T ′
0 � T1〉

In the above rule, disabled(〈s1,M, T1〉, T0) means that
〈s1,M, T1〉 cannot perform any time transition or commit-
ment of tasks (i.e., T1 = �| ) and if it can schedule any new
task, this task is not independent from T0.
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Recursion Finally, (R0) and (R1) specify the concept of re-
cursion. Recursion is interpreted as replacing the recursion
variable with the recursive term. Note that since recursion
is not necessarily guarded in our language, it is possible to
specify schedules that can neither make a transition, nor ter-
minate (deadlock schedules such as µx.x):

(R0)
〈s(µx.s/x),M, T 〉 χ→〈s′,M ′, T ′〉

〈µx.s,M, T 〉 χ→〈s′,M ′, T ′〉

(R1)
〈s(µx.s/x),M, T 〉√

〈µx.s,M, T 〉√

5 Case Study: Steam-Boiler Control

Steam-boiler control is a classical example that has been
used as a common case study in using different formal mod-
eling and specification techniques [1]. We specify this prob-
lem in order to find the strengths and shortcomings of our
design method. First, we explain the informal definition of
the problem and then use our framework to model it. Due to
space restrictions, we simplify the original definition as far
as the simplifications do not reduce technical challenges.

The problem concerns controlling a boiling tank of a
steam-boiler system to keep the water level in a safe area.
The system comprises the following parts:

1. A tank with the maximum capacity C (in liters). This
tanks contains boiling water and the water level should
always be in the safe area between N0 and N1 liters.
However, due to corruptions in the sensors and valves,
the water level may go outside the safe area. If the
water level reaches the dangerous level (lower than M0

or higher than M1) and remains there for some time (5
seconds) a disaster may happen.

2. The tank is connected to a turbine with maximum
steam capacity V (in liters/second). Water can be pro-
vided into the tank using a pump. The pump has maxi-
mum capacity P (in liters/second). After receiving the
command, the pump will start/stop pouring water in
less than 0.5 seconds (in order to balance the pressure).

3. There are sensors to measure the water level q (in
liters) and steam quantity v and pump throughput p
(in liters/second). It is assumed that a liter of water
produces exactly one liter of steam.

4. The pump actuator is connected to the control system
using a communication channel that has a minimum
and maximum delay of 0.2 and 0.5 seconds.

We model three different phases of the system, namely:
normal, rescue, and stop. The normal phase consists of
maintaining the water in the safe range. If the water level
goes beyond its dangerous limits (i.e., below M0 or above
M1), the system should go to the stop phase. If a failure in

the water level sensor is detected (to be discussed shortly)
the system goes to the rescue phase. Failure in any other
sensor, pump, or communication channel should lead the
system to the stop phase.

The rescue phase is concerned with estimating the water
level using the dynamics of the system when the water level
sensor does not work properly. Any further failure present
in this phase or reaching a non-safe water level results in
moving to the stop phase.

The stop phase can be activated both by a manual op-
erator command and by automatic detection of errors and
dangerous circumstances. It results in stopping the control
program.

The failure of equipment can be detected if they measure
some data that contradicts static or dynamic limits of the
system, or if they change their state without being requested
to do so (or vice versa, they do not change their state when
requested to do so). In this case study, we only model failure
detection of the pump and the water sensor.

5.1 The Multiset

In this subsection, we introduce the data items that are
used in defining the rules in the next subsection. All data
items in the multiset will be of the form (name, value)
where name is a label describing the type of information
given by value. We present four groups of data items which
together form the global multiset.

• SystemStatus: used to store and retrieve information
about the SystemPhase (with possible values normal ,
rescue , or stop) and the status (ok or defect) of
the pump and water sensor (PumpSensorStatus and
WaterSensorStatus respectively).

• ChannelData: designed to indicate the state of the
commands submitted to the dedicated channel between
the control program and the pump. PumpCommand

represents the command submitted to the channel
(open , closed , or none) and PumpState represents
the last command received by the pump (at the other
end of the channel) at time PumpChangeTime .

• Dynamics: dedicated to the status of the dynamics of
the system; this includes the water level (WaterLevel ),
the throughput of the pump (PumpThroughput), the
volume of the steam (SteamVolume), and the system
clock (SystemTime).

• EstimationData: contains the timing of the last
estimation of pouring of water into the tank
(LastPoured ), the last evaporation of steam from the
tank (LastSteamOut), and the estimation of the water
level (EstWaterLevel ).
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5.2 Timed-GAMMA Program

In this part, we formalize the basic functionality model
using Timed-GAMMA. We use the following abbrevia-
tions:

• The condition true is omitted from the rules:
r = m0 7→ m1

4
= r = m0 7→ m1 ⇐ true.

• The read part of the rules is indicated explicitly:

r = d0?, · · · , dn? : m0 7→ m1 ⇐ c
4
=

r = d0, · · · , dn,m0 7→ d0, · · · , dn,m1 ⇐ c.
• We usually refer to the pair (name, v) or to v itself

by mentioning only the name, e.g., we write r =
name 7→ v′ as a shorthand for r = (name, v) 7→
(name, v′).

• We assume the existence of a rule idle : ε 7→ ε which
represents the rule doing nothing.

The first set of rules are those dedicated to modeling the
sensors. The functionality of the sensors is to put arbitrary
values for observed variables. This is to model both real
sensors that report real and in-bound values, as well as de-
fective sensors that report out-of-bound ones.

WaterSense = WaterLevel 7→ x,
PumpSense = PumpThroughput 7→ x,
SteamSense = SteamVolume 7→ x

Since we do not have any information about timing of
sensors we leave it unspecified (resulting in [0,∞)). From
now on, unless otherwise specified, we assume that the tim-
ing for rules performing some checks and computations
and updating the multiset (such as estimating water level
or checking for faults) is [0.3, 0.5]. Those rules that only
update some tuples (without any computation) or perform
some checks (without any update) only require [0.2, 0.3]
amount of time.

Issuing the commands for opening and closing the pump
goes as follows. Issuing these commands only takes 0.1
units of time, since the command will only be submitted to
the channel for transmission:

StartPump =SystemTime? :
PumpCommand ,PumpChangeTime

7→ open,SystemTime,
StopPump = SystemTime? :

PumpCommand ,PumpChangeTime

7→ closed ,SystemTime,
TStartPump = TStopPump = [0.1, 0.1]

The Timed-GAMMA rules for the channel consist of
transporting the data from one side of the channel to the
other side. We simplify the model by putting the timing of
transporting the command and the pump reaction together,
so that we do not need to model the pump action separately:

Transport =PumpCommand ,PumpState

7→ none,PumpCommand

⇐ PumpCommand 6= none,
TTransport = [0.2, 1]

The estimation rules are responsible for estimating the
water level by adding poured water and subtracting evap-
orated steam. The Synchronize rule resets the estimated
level to the measured level.

PourWater =PumpThroughput?,SystemTime? :
EstWaterLevel ,LastPoured 7→
EstWaterLevel + WaterPoured ,SystemTime,

EmptySteam =SteamVolume?,SystemTime? :
EstWaterLevel ,LastSteamOut 7→
EstWaterLevel − SteamOut ,SystemTime,

Synchronize =WaterLevel?,SystemTime? :
EstWaterLevel ,LastPoured ,LastSteamOut

7→ WaterLevel ,SystemTime,SystemTime

⇐ (WaterLevel < C)

In the rules, WaterPoured and SteamOut are short-hands
for the following expressions.

WaterPoured
4

= (PumpThroughput∗
(SystemTime − LastPoured))

SteamOut
4

= (SteamVolume∗
(SystemTime − LastSteamOut))

Fault detection checks for out-of-bound and inconsistent
values to mark defective devices. The pump is assumed to
to be defective if it does not react to the issued command
after specified delay D:

WaterSensorError= WaterLevel? :
WaterSensorStatus 7→ defect

⇐ (WaterLevel > C),
PumpSensorError= PumpState?,PumpThroughput?,

SystemTime?,PumpChangeTime? :
PumpSensorStatus 7→ defect

⇐ (PumpState = closed

∧PumpThroughput 6= 0)
∨(PumpState = open

∧PumpThroughput = 0
∧SystemTime >PumpChangeTime+ D)

RestorePumpSensor= PumpSensorStatus 7→ ok ,
RestoreWaterSensor= WaterSensorStatus 7→ ok

The phase change rules change the variable denot-
ing the system phase and define the initialization process.
StopCheck looks for the stop phase element in the multi-
set (we assume that user intervention results in a stop phase
element in the multiset):

StopPhase = SystemPhase 7→ stop,
RescuePhase = SystemPhase 7→ rescue,
NormalPhase= SystemPhase 7→ normal ,
StopCheck = (SystemPhase, stop)? : idle,
Initialize = PumpState,PumpSensorStatus,

WaterSensorStatus,WaterLevel ,
EstWaterLevel ,SteamVolume,SystemTime

7→ closed , ok , ok , x, x, x, 0
⇐ (x > N0) ∧ (x < N1)
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We design a global system clock as follows:

Tick = SystemTime 7→ SystemTime + tickTime,
TTick = [tickTime, tickTime]

5.3 Coordination

The coordination part composes the GAMMA rules of
the previous subsection in the desired order. We use the
following abbreviations:

• For schedules s, we write c B s to represent (c B

idle) y s[skip].
• Most of the time, checking the feasibility of schedul-

ing a rule is followed by executing it. We define
the following abbreviation to represent this pattern:

r → s[t]
4
= r y (r ; s)[t].

The external environments of the steam-boiler system
are the system clock and the sensors. Also, the channel
performs its functionality independent of the control soft-
ware structure. Since the system clock’s timing should not
be interfered by the timing of other components in the sys-
tem, it is composed with the rest of the system using strict
parallelism (since sensors do not have timing specifica-
tions, abstract parallelism works for them as well). Sched-
ule SystemClock represents the system clock that executes
tick actions sequentially (according to its specified timing).
Schedule Channel is in charge of transporting data in the
channel and time-stamping the receipt time.

SystemClock = µX.Tick ; X
WaterSensor = µX.WaterSense ; X
SteamSensor = µX.SteamSense ; X
PumpSensor = µX.PumpSense ; X
Channel = µX.Transport ; X
Env = SystemClock ||| WaterSensor |||

SteamSensor ||| PumpSensor ||| Channel

The schedule ControlWater is responsible for opening
and closing the pump to keep the water in the safe range.
RescueControl does the same job using the estimated water
level. We start taking measures at N ′

0 (with N ′
0 > N0) and

N ′
1 (with N ′

1 < N1) in the rescue phase because of impre-
ciseness induced by the estimations. The schedule Control
combines the two control strategies in parallel:

ControlWater = ((WaterLevel < N0) B StartPump) ||
((WaterLevel > N1) B StopPump)

WaterEstimate = PourWater || EmptySteam

RescueControl = ((EstWaterLevel < N ′
0) B StartPump) ||

((EstWaterLevel > N ′
1) B StopPump)

Rescue = ((SystemPhase = rescue) B WaterEstimate) ;
((SystemPhase = rescue) B RescueControl)

Normal = ((SystemPhase = normal) B ControlWater) ||
((SystemPhase = normal) B Synchronize)

Control = Normal || Rescue

ChangePhase performs the selection of the right phase
of the system (based on the state of the sensors):

ChangePhase = PumpSensorError → StopPhase

[WaterSensorError →
(RestoreWaterSensor || RescuePhase)
[NormalPhase]]

RescueDanger = (SystemPhase = rescue)∧
((EstWaterLevel < M0)∨
(EstWaterLevel > M1)) B StopPhase

NormalDanger = (SystemPhase = normal)∧
((WaterLevel < M0)∨
(WaterLevel > M1)) B StopPhase

DangerCheck = RescueDanger || NormalDanger

The routine procedure of the control software consists of
performing the control phases iteratively, as long as the stop
command and the dangerous condition are not detected:

SteamBoiler = Initialize ;
(Env ||| (µX.StopCheck → skip[(DangerCheck ||
(ChangePhase ; Control)) ; X]))

5.4 Reasoning About the Design

Our design has the following properties:

1. The Control schedule takes at most 1.2 units of time.
This value results from summing up the maximum
execution times of the individual rules and assum-
ing abstract parallel schedules to be sequential. Note
that the two parallel schedules Rescue and Normal

exclude each other since during control the phases
do not change. Following the same calculations, the
StopCheck , DangerCheck and ChangePhase sched-
ules take at most 0.3, 0.5 and 1.1 time units, respec-
tively. Hence, assuming that the system goes beyond
its limits right after executing StopCheck and remains
there during the Control and ChangePhase sched-
ules, the system will be stopped after 0.3 + 0.5 + 1.1
+1.2 = 3.1 units of time. For the normal phase, this
guarantees safety of the system.

2. The pumps will start/stop at most by 3.1 + 1 = 4.1
units of time (considering the timing of the control
loop and the communication delay together with the
pump reaction time). This means that if the water level
reaches its limits of N0 or N1, it will take the appropri-
ate action in stopping and starting pumps within this
time. Again, in the normal phase, this can guarantee
the liveness of the system; that is, if the pumps and
steam turbine are able to return the system within the
remaining 0.9 unit of time to the area between M0 and
M1 then the system will not stop due to the danger of
explosion.
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3. Assuming that the rescue phase lasts at most t time
units, our estimated water level may deviate from the
real level at most by (P +V )∗t since pump throughput
and steam volume can be at most P and V units off
during this period. Note that this is a very pessimistic
upper bound for the estimation error and if we exploit
the upper bounds for the gradients of the dynamics this
upper bound can be refined. Using this upper bound
for the error in estimation, it follows that one of the
following cases should hold for the rescue phase:

(a) The duration of rescue phase should be so small
that the system proceeds with normal control and
stops there before the explosion occurs: t < 5 −
4.1 = 0.9.

(b) Suppose that the property in item 2 holds for nor-
mal phase. This means that if the system finds
the actual water level out of the interval [N0, N1],
then it is able to bring it to the safe limits in the
remaining time before the system is in danger.
Thus, if we start taking measures earlier in the
rescue phase, such that N ′

0 − N0 < (P + V ) ∗ t
and N1 − N ′

1 < (P + V ) ∗ t, then we are
able to compensate our errors in estimation. (A
similar approach could be taken if we designed
the RescueDanger schedule to stop earlier rather
than at M0 and M1. )

6 Related Work

We can categorize related work in the field in two parts:
First, the attempts to formalize real-time functionality in
shared data-space systems, and second, those works con-
centrating on formalizing the real-time behavior (composed
functionality) of processes (namely, timed process alge-
bras):

1. Models of shared data-space with time: A few attempts
have been made to extend data coordination languages
with time. In [10], four different timed extensions of
the concurrent Linda coordination model are presented
(namely, with relative delay, absolute wait, relative
durational primitives, and absolute durational primi-
tives). Although relative durational primitives are con-
ceptually close to our extension of GAMMA rules,
they are reasonably different from ours in that they
force time-stamping the data-space and only allow in-
troduction and consumption of temporary elements
to/from the data-space. Furthermore, time transi-
tions are synchronized among all durational primitives.
Also, in [8] a framework is proposed for compositional
reasoning about real-time shared data-space systems in
PVS. In this approach, data elements are time-stamped
when introduced in the shared data-space. We did not

require time-stamping in our framework since it is not
necessary when only timing information of tasks suf-
fices for the specification of the system.

2. Timed Process Algebras: There are several extensions
of process calculi with timing in the literature. An
overview of such extensions can be found in [15, 5].
Our schedules language can be categorized as a pro-
cess calculus with relative intervals with delayable ac-
tions. CCSiT is an extension of CCS, defined in [4],
which is comparable to our schedules. In CCSiT, in-
tervals are attached initially to the process terms, and
they are interpreted as the execution time of enabled
actions; when an action is enabled, its execution time
(named as idling transition) starts. In our view, keep-
ing timing concerns separate from causal relations of
actions is helpful, especially in early stages of the de-
sign where the details of the actual implementation
domain are not known. Apart from this fact, there is
no notion of abstract parallelism (with the possibility
of asynchronous time passage) defined in the above
timed process calculi and time transitions proceed syn-
chronously. In our view, abstract parallel composition
can be useful in high -level design where the true con-
currency level and resource scheduling policy is not
determined yet.

Among the attempts to formalize the steam-boiler case
study, those using process algebraic formalisms are close
to our approach. For example, [16] uses Time Extended
LOTOS to formalize the case. An interesting observation
about the case study is that the specifiers were forced to use
another language (a functional programming language) to
specify their functionality aspect. This shows the fact that
process algebraic approaches are more suitable for speci-
fication of behavior/coordination and timing (usually in a
mixed fashion) than for the specification of functionality.
Our approach tries to provide a monolithic framework that
supports the above aspect specifications.

7 Conclusion and Future Directions

In this paper, we presented a framework for formal de-
sign of real-time shared data-space systems. The distin-
guishing feature of this framework is that it supports sepa-
ration of functionality, timing and coordination as different
aspects of system design. Semantics of each meaningful
combination of these aspects should take care of their re-
flections and interactions and weave them together. In this
paper, we presented the semantics of (timed) functionality
and (timed) functionality plus coordination. In [11], an un-
timed semantics of GAMMA can be found. Apart from re-
alizing this design philosophy, we can summarize the con-
tributions of this paper as follows:
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1. Defining and formalizing read parallelism in
GAMMA semantics using computations and an
independence relation. (The original GAMMA
semantics does not have a notion of true concurrency,
and thus does not contain any notion of independence.)
This contribution can be seen as a formalization of the
transaction-based programming of [6].

2. Extension of GAMMA and schedule semantics to
timed semantics.

3. Reflection of three phases of basic transactions
(scheduling, computing, and commitment) in the for-
mal semantics of Timed-GAMMA and schedules.

Ongoing and future steps of this research include mech-
anization of a verification process, extension to distribution,
mobility, and resource scheduling aspects, and providing
transformations to the implementation domain. A mecha-
nization of Timed-GAMMA and schedules is being under-
taken using the PVS [13] proof mechanization tool. In [12],
we defined basic ideas of the distribution aspect and applied
it to a small case study. A middleware support for separation
of different aspect is being developed. Currently, the imple-
mented middleware supports the distribution aspect but we
are planning to extend it to support the timing aspect as well.
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