
Bugs and Debugging of Concurrent and Multicore Software

Sara Abbaspour Asadollah

Mälardalen University, Väster̊as, Sweden
sara.abbaspour@mdh.se

Abstract

Multicore platforms have been widely adopted in recent years and have resulted in increased
development of concurrent software. However, concurrent software is still difficult to test and
debug for at least three reasons: (1) concurrency bugs involve complex interactions among
multiple threads; (2) concurrency bugs are hard to reproduce and (3) concurrent software
has a large interleaving space. Current testing techniques and solutions for concurrency
bugs typically focus on exposing concurrency bugs in the large interleaving space, but they
often do not provide debugging information for developers (or testers) to understand the bugs.

Debugging, the process of identifying, localizing and fixing bugs, is a key activity in software
development. Debugging concurrent software is significantly more challenging than debugging
sequential software mainly due to the issues like non-determinism and difficulties of reproducing
failures.

We investigate the first and second of the above mentioned problems in concurrent software
with the aim to help developers (and testers) to better understand concurrency bugs. We
propose a disjoint classification for concurrency bugs by classifying the bugs in a common
structure considering relevant observable properties in order to map relevant studies with our
proposed classification and explore concurrency-related bugs in real-world software.

We also provide an overview of existing research on concurrent and multicore software de-
bugging. We apply a systematic mapping study method in order to summarize the recent
publication trends and clarify current research gaps in the field. Based on the obtained results
we summarize the publication trend in the field during the last decade by showing distributions
of publications with respect to year, publication venues, representation of academia and indus-
try, and active research institutes. We identify research gaps in the field based on attributes
such as types of concurrency bugs, types of debugging processes, types of research and research
contributions. The results of our mapping study also indicate that the current body of knowl-
edge concerning debugging concurrent and multicore software does not report studies on many
of the other types of bugs or on the debugging process.

Moreover, we investigate the bug reports from an open source software project (Apache
Hadoop). Our results indicate that a relatively small share of bugs is related to concurrency
issues, while the vast majority are non-concurrency bugs. Fixing time for concurrency and non-
concurrency bugs is different but this difference is relatively small. In addition, concurrency
bugs are considered to be slightly more severe than non-concurrency bugs.

A general conclusion from the investigations reveal that even if there are quite a number of
studies on concurrent and multicore software debugging, there are still some issues that have
not been sufficiently covered including order violation, suspension and starvation. Furthermore,
our investigation shows it is still hard for developers and testers to distinguish concurrency bugs
from other types of software bugs. An interesting agenda for future work would be to combine
the evidence identified in the systematic mapping study with evidence from the case study to
define hypotheses and theories which will form the basis for proposing new methods, process



and tools for concurrent and multicore software debugging. We think a possible future research
is to propose solutions to bridge the identified gaps between the paradigms.


