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Sample Program, Java + SQL + Tables
class Demo {
int demo ( ) {
int SELECT ;
int T ;
connection c "jdbc:derby:/home/derby/db/testdb"

import table person, details ;
Integer limit = 18 ; 
ResultSet rs = using c query { 

SELECT age, gender, last_name
FROM person , details
WHERE person.person_id = details.person_id
AND details.age > limit } ;

Integer = rs.getInteger("age");
String gender = rs.getString("gender");
boolean b ;
b = table ( age > 40      : T * ,

gender == "M" : T F ) ;
}

}
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• Scanner ?

• Parser ?

• Type Checker/Analyzer ?

• Generated from composed specifications. 

• Unordered, piece-wise union of context 
free grammars and attribute definitions
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Some challenges.
int SELECT ;
...
rs = using c query { SELECT last_name

FROM person WHERE … } ;

connection c "jdbc:derby:./derby/db/testdb“
import table person, details;

...
b = table ( c1 :  T F ,

c2 :  F * ) ;
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Some challenges.
x = 3 + y * z ;
...
str =~ /[a-z][a-z0-9]*\.test/

List<List<Integer>> ll ;
. . .
x = y >> 4 ;

aspect ... before ... call( o.get*() )
... 
x = get*3 ;

[from Visser’s OOPSLA 06 paper on parsing AspectJ]
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Context Aware Scanning

Parser passes “valid lookahead terminals” to scanner
terminals with shift, reduce, or accept entries in parse table for 
current LR parse state

Scanner only returns tokens from the valid look-ahead set.

Scanner Parser Semantic
Analyzer

Scanner Parser Semantic
Analyzer

traditional

context-aware
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Context Aware Scanning
This scanning algorithm subordinates the 
disambiguation principle of maximal munch
to the principle of 
disambiguation by context.

It will return a shorter valid match before a longer invalid match.
In   List<List<Integer>>,      “>” in valid lookahead, “>>” is not. 

A context aware scanner is essentially an implicitly-moded scanner.
Each parser state is a different mode.

No explicit specification of valid look ahead.  
Generated from standard grammars and terminal regexs.

[GPCE 07]
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Sample Program, Java + SQL + Tables
class Demo {
int demo ( ) {
int SELECT ;
int T ;
connection c "jdbc:derby:/home/derby/db/testdb"
import table person, details ;

Integer limit = 18 ; 
ResultSet rs = using c query { 

SELECT age, gender, last_name
FROM person , details
WHERE person.person_id = details.person_id
AND details.age > limit } ;

Integer = rs.getInteger("age");
String gender = rs.getString("gender");
boolean b ;
b = table ( age > 40      : T * ,

gender == "M" : T F ) ;
}

}

We can compose extension grammars 
to build parser and scanner for this.



Eric Van Wyk, University of Minnesota 10 WG 2.11 San Jose, CA, April 15, 2009 

Syntactic and Lexical Determinism
Freedom of conflicts in LR parse table indicates syntactic 
determinism of the grammar.
Lexical determinism – scanner will never return more than 
one terminal symbol.

A monolithic analysis
no conflicts in parse table  syntactic determinism
for each parse state p,  
for each pair of distinct terminals t1, t2, both in valid-lookahead(p),

t1 and t2 regexs must be disjoint languages (no overlap)
or

( t1 > t2   or   t2 > t1 )    (disambiguation by lexical precedence)
lexical determinism
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Modular Analysis
Programmer combines multiple extensions

Will he or she be told of shift-reduce conflict in some 
state?    Or of a lexical ambiguity?

Can the extension designer check this modularly?

[PLDI 09]
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Goals, Restrictions, Expressiveness
Extension constructs can contain host language 
constructs.

ext. productions have host NTs on right hand side
the tables construct contains host language expressions

Few restrictions (beyond LALR(1) restrictions) on 
embedded languages

e.g. SQL, embedded regular-expressions
Restrictions:

grammar structure, grammar properties (follow sets), 
LR DFA

Expressiveness vs. Safety
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Restriction 1 : Grammar structure
marking token
b = table ( age > 40      : T * ,

gender == "M" : T F ) ;

Transition from host state to ext. state only by 
shifting a marking token.

Expr ::=  ‘table’ TRows
TRow ::= Expr ‘:’ TFStarList
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Restriction 2: Follow Sets
In the combined host language, single extension 
grammar (H + Ei),  

no new testament to added the follow sets of host 
language non terminals.
except for marking tokens
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Restriction 3: LR DFA
host language state s in LR-DFA (H + Ei) has no 
new look-ahead in its items, except marking 
terminals
host language states s in LR-DFA ( H + Ei ) 
and not in LR-DFA ( H ) are such that their items 
and look-ahead are the subset of a state in LR-
DFA( H )
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Partitioning of Host-and-1-ext LR-DFA
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Partitioning of Host-and-2-exts LR-DFA
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Modular Lexical Determinism Analysis
Partition of parser DFA ensures that lexical 
ambiguities are only between

terminals in host and a single extension
resolved by extension writer

marking terminals on two different extensions
cannot be resolved by extension writer
only programmer who composed the language can 
resolve them.
accomplished by “transparent prefixes”
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Experience with the restrictions
SQL, tables, various other all pass easily
Expr ::=  ‘table’ TRows
TRow ::= Expr ‘:’ TFStarList
follow set of Expr already contained ‘:’
Extensions are more easily added to syntactically 
rich languages

they have larger follow sets
not so easy to add to small toy languages
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Restrictions and new infix operators
Grammars that add new infix operators do not 
pass the modular analysis.

However, many extensible language systems 
allow type-based overloading of existing 
operators.
Thus, it is less of a problem.
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Restrictions and AspectJ
Java 1.4 +  abc grammar for AspectJ

declarative specification for a deterministic scanner and 
parser

This fails the modular analysis
it adds to follow sets of Java 1.4
marking terminals in the wrong place

Java:       Dcl ::= Modifiers Type Id …
AspectJ:   Dcl ::= Modifiers Aspect

Can refactor the host grammar to fix this problem.
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Expressiveness vs.  Safe composition
Compare to

other parser generators
libraries

The modular compositionality analysis does not 
require context aware scanning.
But, context aware scanning makes it practical.
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Tool support
Copper – context-aware parser and scanner 
generator

implements context-aware scanning for a LR parser
lexical precedence 
parser attributes
disambiguation functions – when disambiguation by 
context and lexical precedence is not enough
currently integrated into Silver
also a stand alone version
generated parser and scanner in Java
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Related Work
Traditional LALR(1) parsing tools (Yacc)

“brittle” – composition of grammars can introduce shift-
reduce and reduce-reduce conflicts.

Parsing Expression Grammars
require an ordering on productions with the same left 
hand side nonterminal.

Tattoo
Introduced similar notion of parse-state-based context 
aware scanning.
Described only as an optimization.   No discussion of 
increased expressiveness.
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Related Work
Generalized LR 

parse any CFG
Visser’s SGLR – Scannerless GLR

also uses parser context in recognizing “terminals”
parses them in all possible ways and later throws 
out the ones that don’t fit into the parse.

not deterministic – for extensible languages some 
assurance of parser and scanner behavior is desirable
trade determinism analysis for larger class of grammars
matter of philosophy as to which one prefers
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Related Work
Lexical-based context-aware scanning.
The two level scanners of Rus, Knaack, and Halverson:

One can specify that a regular expression should only match if the 
token(s) to the left satisfy some criteria.

Their pattern-matching parser also supports conditional 
reduction of productions:

X ::= a Y b
In the sentential form “s r a Y b r” the PMP will replace a Y b with 
X.
This will be allowed only in the right context.

Scanner and parser are still disjoint.
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