
Verifiable Composition of
Deterministic Grammars

August Schwerdfeger and Eric Van Wyk

Department of Computer Science www.melt.cs.umn.edu
and Engineering schwerdf@cs.umn.edu

University of Minnesota evw@cs.umn.edu

Eric Van Wyk, University of Minnesota 2 WG 2.11 San Jose, CA, April 15, 2009

Sample Program, Java + SQL + Tables
class Demo {
int demo () {
int SELECT ;
int T ;
connection c "jdbc:derby:/home/derby/db/testdb"

import table person, details ;
Integer limit = 18 ;
ResultSet rs = using c query {

SELECT age, gender, last_name
FROM person , details
WHERE person.person_id = details.person_id
AND details.age > limit } ;

Integer = rs.getInteger("age");
String gender = rs.getString("gender");
boolean b ;
b = table (age > 40 : T * ,

gender == "M" : T F) ;
}

}

statically detect
syntax and type
errors in query

natural syntax

Two
extensions,

from different
sources

Eric Van Wyk, University of Minnesota 3 WG 2.11 San Jose, CA, April 15, 2009

SQL

Tables

CompGeom

Language
Feature
Designers

Programmer

writes

writes

writes

Language
Extensions

Java
program
with SQL,
tables, CG
constructs

writes

Silver AG,
Copper Tools

Custom Lang.
Translator

selects
extensions

writes?

Java Host Lang

Reduced
code, pure

Java

Programming with language extensions

“domain
experts”

no implementation
level knowledge

Eric Van Wyk, University of Minnesota 4 WG 2.11 San Jose, CA, April 15, 2009

SQL

Tables

CompGeom

Language
Feature
Designers

Programmer

writes

writes

writes

Language
Extensions

Java
program
with SQL,
tables, CG
constructs

writes

Silver AG,
Copper Tools

Custom Lang.
Translator

selects
extensions

writes?

Java Host Lang

Reduced
code, pure

Java

Programming with language extensions

“domain
experts”

no implementation
level knowledge

• Scanner ?

• Parser ?

• Type Checker/Analyzer ?

• Generated from composed specifications.

• Unordered, piece-wise union of context
free grammars and attribute definitions

Eric Van Wyk, University of Minnesota 5 WG 2.11 San Jose, CA, April 15, 2009

Some challenges.
int SELECT ;
...
rs = using c query { SELECT last_name

FROM person WHERE … } ;

connection c "jdbc:derby:./derby/db/testdb“
import table person, details;

...
b = table (c1 : T F ,

c2 : F *) ;

Eric Van Wyk, University of Minnesota 6 WG 2.11 San Jose, CA, April 15, 2009

Some challenges.
x = 3 + y * z ;
...
str =~ /[a-z][a-z0-9]*\.test/

List<List<Integer>> ll ;
. . .
x = y >> 4 ;

aspect ... before ... call(o.get*())
...
x = get*3 ;

[from Visser’s OOPSLA 06 paper on parsing AspectJ]

Eric Van Wyk, University of Minnesota 7 WG 2.11 San Jose, CA, April 15, 2009

Context Aware Scanning

Parser passes “valid lookahead terminals” to scanner
terminals with shift, reduce, or accept entries in parse table for
current LR parse state

Scanner only returns tokens from the valid look-ahead set.

Scanner Parser Semantic
Analyzer

Scanner Parser Semantic
Analyzer

traditional

context-aware

Eric Van Wyk, University of Minnesota 8 WG 2.11 San Jose, CA, April 15, 2009

Context Aware Scanning
This scanning algorithm subordinates the
disambiguation principle of maximal munch
to the principle of
disambiguation by context.

It will return a shorter valid match before a longer invalid match.
In List<List<Integer>>, “>” in valid lookahead, “>>” is not.

A context aware scanner is essentially an implicitly-moded scanner.
Each parser state is a different mode.

No explicit specification of valid look ahead.
Generated from standard grammars and terminal regexs.

[GPCE 07]

Eric Van Wyk, University of Minnesota 9 WG 2.11 San Jose, CA, April 15, 2009

Sample Program, Java + SQL + Tables
class Demo {
int demo () {
int SELECT ;
int T ;
connection c "jdbc:derby:/home/derby/db/testdb"
import table person, details ;

Integer limit = 18 ;
ResultSet rs = using c query {

SELECT age, gender, last_name
FROM person , details
WHERE person.person_id = details.person_id
AND details.age > limit } ;

Integer = rs.getInteger("age");
String gender = rs.getString("gender");
boolean b ;
b = table (age > 40 : T * ,

gender == "M" : T F) ;
}

}

We can compose extension grammars
to build parser and scanner for this.

Eric Van Wyk, University of Minnesota 10 WG 2.11 San Jose, CA, April 15, 2009

Syntactic and Lexical Determinism
Freedom of conflicts in LR parse table indicates syntactic
determinism of the grammar.
Lexical determinism – scanner will never return more than
one terminal symbol.

A monolithic analysis
no conflicts in parse table syntactic determinism
for each parse state p,
for each pair of distinct terminals t1, t2, both in valid-lookahead(p),

t1 and t2 regexs must be disjoint languages (no overlap)
or

(t1 > t2 or t2 > t1) (disambiguation by lexical precedence)
lexical determinism

Eric Van Wyk, University of Minnesota 11 WG 2.11 San Jose, CA, April 15, 2009

Modular Analysis
Programmer combines multiple extensions

Will he or she be told of shift-reduce conflict in some
state? Or of a lexical ambiguity?

Can the extension designer check this modularly?

[PLDI 09]

Eric Van Wyk, University of Minnesota 12 WG 2.11 San Jose, CA, April 15, 2009

Modular Analysis
Programmer combines multiple extensions

Will he or she be told of shift-reduce conflict in some
state? Or of a lexical ambiguity?

Can the extension designer check this modularly?

[PLDI 09]

Eric Van Wyk, University of Minnesota 13 WG 2.11 San Jose, CA, April 15, 2009

Eric Van Wyk, University of Minnesota 14 WG 2.11 San Jose, CA, April 15, 2009

Goals, Restrictions, Expressiveness
Extension constructs can contain host language
constructs.

ext. productions have host NTs on right hand side
the tables construct contains host language expressions

Few restrictions (beyond LALR(1) restrictions) on
embedded languages

e.g. SQL, embedded regular-expressions
Restrictions:

grammar structure, grammar properties (follow sets),
LR DFA

Expressiveness vs. Safety

Eric Van Wyk, University of Minnesota 15 WG 2.11 San Jose, CA, April 15, 2009

Restriction 1 : Grammar structure
marking token
b = table (age > 40 : T * ,

gender == "M" : T F) ;

Transition from host state to ext. state only by
shifting a marking token.

Expr ::= ‘table’ TRows
TRow ::= Expr ‘:’ TFStarList

Eric Van Wyk, University of Minnesota 16 WG 2.11 San Jose, CA, April 15, 2009

Restriction 2: Follow Sets
In the combined host language, single extension
grammar (H + Ei),

no new testament to added the follow sets of host
language non terminals.
except for marking tokens

Eric Van Wyk, University of Minnesota 17 WG 2.11 San Jose, CA, April 15, 2009

Restriction 3: LR DFA
host language state s in LR-DFA (H + Ei) has no
new look-ahead in its items, except marking
terminals
host language states s in LR-DFA (H + Ei)
and not in LR-DFA (H) are such that their items
and look-ahead are the subset of a state in LR-
DFA(H)

Eric Van Wyk, University of Minnesota 18 WG 2.11 San Jose, CA, April 15, 2009

Partitioning of Host-and-1-ext LR-DFA

Eric Van Wyk, University of Minnesota 19 WG 2.11 San Jose, CA, April 15, 2009

Partitioning of Host-and-2-exts LR-DFA

Eric Van Wyk, University of Minnesota 20 WG 2.11 San Jose, CA, April 15, 2009

Modular Lexical Determinism Analysis
Partition of parser DFA ensures that lexical
ambiguities are only between

terminals in host and a single extension
resolved by extension writer

marking terminals on two different extensions
cannot be resolved by extension writer
only programmer who composed the language can
resolve them.
accomplished by “transparent prefixes”

Eric Van Wyk, University of Minnesota 21 WG 2.11 San Jose, CA, April 15, 2009

Experience with the restrictions
SQL, tables, various other all pass easily
Expr ::= ‘table’ TRows
TRow ::= Expr ‘:’ TFStarList
follow set of Expr already contained ‘:’
Extensions are more easily added to syntactically
rich languages

they have larger follow sets
not so easy to add to small toy languages

Eric Van Wyk, University of Minnesota 22 WG 2.11 San Jose, CA, April 15, 2009

Restrictions and new infix operators
Grammars that add new infix operators do not
pass the modular analysis.

However, many extensible language systems
allow type-based overloading of existing
operators.
Thus, it is less of a problem.

Eric Van Wyk, University of Minnesota 23 WG 2.11 San Jose, CA, April 15, 2009

Restrictions and AspectJ
Java 1.4 + abc grammar for AspectJ

declarative specification for a deterministic scanner and
parser

This fails the modular analysis
it adds to follow sets of Java 1.4
marking terminals in the wrong place

Java: Dcl ::= Modifiers Type Id …
AspectJ: Dcl ::= Modifiers Aspect

Can refactor the host grammar to fix this problem.

Eric Van Wyk, University of Minnesota 24 WG 2.11 San Jose, CA, April 15, 2009

Expressiveness vs. Safe composition
Compare to

other parser generators
libraries

The modular compositionality analysis does not
require context aware scanning.
But, context aware scanning makes it practical.

Eric Van Wyk, University of Minnesota 25 WG 2.11 San Jose, CA, April 15, 2009

Tool support
Copper – context-aware parser and scanner
generator

implements context-aware scanning for a LR parser
lexical precedence
parser attributes
disambiguation functions – when disambiguation by
context and lexical precedence is not enough
currently integrated into Silver
also a stand alone version
generated parser and scanner in Java

Eric Van Wyk, University of Minnesota 26 WG 2.11 San Jose, CA, April 15, 2009

Related Work
Traditional LALR(1) parsing tools (Yacc)

“brittle” – composition of grammars can introduce shift-
reduce and reduce-reduce conflicts.

Parsing Expression Grammars
require an ordering on productions with the same left
hand side nonterminal.

Tattoo
Introduced similar notion of parse-state-based context
aware scanning.
Described only as an optimization. No discussion of
increased expressiveness.

Eric Van Wyk, University of Minnesota 27 WG 2.11 San Jose, CA, April 15, 2009

Related Work
Generalized LR

parse any CFG
Visser’s SGLR – Scannerless GLR

also uses parser context in recognizing “terminals”
parses them in all possible ways and later throws
out the ones that don’t fit into the parse.

not deterministic – for extensible languages some
assurance of parser and scanner behavior is desirable
trade determinism analysis for larger class of grammars
matter of philosophy as to which one prefers

Eric Van Wyk, University of Minnesota 28 WG 2.11 San Jose, CA, April 15, 2009

Related Work
Lexical-based context-aware scanning.
The two level scanners of Rus, Knaack, and Halverson:

One can specify that a regular expression should only match if the
token(s) to the left satisfy some criteria.

Their pattern-matching parser also supports conditional
reduction of productions:

X ::= a Y b
In the sentential form “s r a Y b r” the PMP will replace a Y b with
X.
This will be allowed only in the right context.

Scanner and parser are still disjoint.

Eric Van Wyk, University of Minnesota 29 WG 2.11 San Jose, CA, April 15, 2009

More information
www.melt.cs.umn.edu

downloads, papers, etc.

evw@cs.umn.edu

Thanks to my students - August Schwerdfeger, Jimin Gao,
Lijesh Krishnan, Derek Bodin, Yogesh Mali.

… Thanks for your attention.

Thanks to National Science Foundation, IBM, and the McKnight Foundation for funding
aspects of this work.

