A Conservative Extension of Synchronous
Data-flow with State Machines =

Jean-Louis Colaco, Bruno Pagano Marc Pouzet

Esterel-Technologies (France) Université Paris-Sud (France)

IFIP WG 2.11, Dagstuhl
Jan. 26th, 2006

apresented at EMSOFT 05



Designing Mixed Systems

Data dominated Systems: continuous and multi-sampled systems,
block-diagram formalisms
— Simulation tools: MathWorks/Simulink, etc.

— Programming languages: Scade/Lustre, Signal, etc.

Control dominated systems: transition systems, event-driven systems, Finite
State Machine formalisms

— MathWorks/StateFlow, StateCharts
— SyncCharts, Esterel, etc.
What about mixed systems?
e most system are a mix of the two kinds: systems have “modes”
e cach mode is a big control law, naturally described as data-flow equations

e a control part switching these modes and naturally described by a FSM



Extending Scade/Lustre with State Machines

Scade/Lustre:

data-flow style with synchronous semantics

certified code generator

Motivations

activation conditions between several “modes”

arbitrary nesting of automata and equations

well integrated, inside the same language (tool)

in a uniform formalism (code certification, code quality, readability)

be conservative: accept all Scade/Lustre and keep the semantics of the kernel
which can be formely certified (to meet avionic constraints)

efficient code, keep (if possible) the existing certified code generator



First approach: linking mechanisms

e two (or more) specific languages: one for data-flow and one for control-flow

o “linking” mechanism. A sequential system is more or less represented as a pair:
— a transition function f: S x I — 0O x S

— an initial memory My : S

i f o]

(conbinatorial)

M

e agree on a common representation and add some glue code
e this is provided in most academic and industrial tools

e Ptolemyll, Simulink + StateFlow, Lustre 4+ Esterel Sudio SSM, etc.



An example: the Cruise Control (SCADE V4.2)

> =
I 0ff >

| AN RegulON

' L
Resume

Cruise State R
[ >
Brake —l— RegulOFF

PedalsPressed

= >

Acsel RequiSTDBY

|—>—- SpeedLimit :‘,:‘:)—

Speed

—
L &

Set
- >

QuickAccql Cruise Speed
Cruise Speedhigt Syl
> ] o T
QuickDecel J’ | Throttle Cmd
l o ) 0.0 IJ 0.0 bJ focel
Speed
G Enabled )

Regulation

AcceleratorPressed BrakePressed/
or SpeedOutOffLimits/

StandBy
t/Regul_ STDEY

Interrupt
, #/Regul_OFF,

not (Speed0utOffLimits
Off? or AcceleratorPressed) /

nol BrakePressed/




Observations

automata can only appear at the leaves of the data-flow model: we need a finer

integration

forces the programmer to make decisions at the very beginning of the design
(what is the good methodology?)

the control structure is not explicit and hidden in boolean values: nothing

indicate that modes are exclusive
code certification?
efficiency /simplicity of the code?

how to exploit this information for program analysis and verification tools?



Second approach: designing a “language” extension

Mode automata (Lustre): Maraninchi & Rémond [ESOP98, SCP03]

e Lustre + automata: states are made of Lustre equations

e specific compilation method, generates good code

e restriction on the Lustre language, on the type of transitions
Lucid Synchrone V2: Hamon & Pouzet [PPDP00,SLAPO04]

e extend Lustre with a modular reset, no restriction

e rely on the clock mechanism to express control structures in a safe way

e no particular syntax (manual encoding of automata), hard to program with



Our Proposal

e extend a basic clocked calculus (Lustre) with automata constructions
Two implementations
¢ ReLuC compiler of Scade/Lustre at Esterel-Technologies

e Lucid Synchrone language and compiler



Principles

accept to limit the expressivity, provided safety can be ensured easilly

do not ask too much to a compiler: only provide automata constructs which

compile well

keep things simple: one definition of a flow during a reaction, one active state,

substitution principle

use clocks to give a precise semantics: we know how to compile clocked

data-flow programs efficiently
give a translation semantics into the basic data-flow language

type and clock preserving source-to-source transformation
— T : ClockedBasicCalculus + Automata — ClockedBasicCalculus
— HFe:tythen HF T(e) :ty HFe:clthen HF T(e): cl



A clocked data-flow basic calculus

Expressions:
e == Clz|pre(e)|e->e] (e e)|x(e)

z(e) every e

e when C(e)

merge e (C —e) ... (C — e)
Equations:

D = DandD|z=c¢
Enumerated types:
td = typet|typet=C1+..+C, |td;td

Basics:
e synchronous data-flow semantics, type system, clock calculus, etc.

e cfficient compilation into sequential imperative code



N-ary Merge

merge combines two complementary flows (flows on complementary clocks) to

produce a faster one:

Mer ge N B BEREE B

b7| b6 b5| b4| b3| b2 bl

Example: merge ¢ (a when c) (b whenot c)

(Generalization:

e can be generalized to n inputs with a specific extension of clocks with
enumerated types

e the sampling e when c is written e when True(c)
e the semantics extends naturally and we know how to compile it efficiently

e thus, a good basic for compilation



Reseting a behavior

e in Scade/Lustre, the “reset” behavior of an operator must be explicitely

designed with a specific reset input

let node count () = s where

rec s =0 ->pres + 1

let node resetable_counter r = s where

rec s = 1f r then 0 else 0 -> pre s + 1
e painful to apply on large model

e propose a primitive that applies on node instance and allow to reset any node

(no specific design condition)



Modularity and reset
Specific notation in the basic calculus: z(e) everyc

e all the node instances used in the definition of node x are reseted when the

boolean c is true
is-it a primitive construct? yes and no

e modular translation of the basic language with reset into the basic language
without reset [PPDPOO]

e ecssentially adds a wire everywhere in the program

® ¢1 —> e9 becomes if ¢ then e; else e5

e very demanding to the code generator whereas it is trivial to compile!
e useful translation for verification tools, basic for compilation

e thus, a good basic for compilation



Automata extension

Scade/Lustre implicit parallelism of data-flow diagrams
automata can be composed in parallel with these diagrams
hierarchy: a state can contain a parallel composition of automata and data-flow

each hierarchy level introduces a new lexical scope for variables



An example: the Franc/Euro converter

Fr anc Eur o

fr = v; fr = v*6. 55957;
eu = v/ 6.55957; eu = v;

in concrete (Lucid Synchrone) syntax:

let node converter v ¢ = (euro, fr) where

automaton

v and eur = v / 6.55957
until c¢ then Euro
| Euro -> do fr = v * 6.55957 and eu = v

until ¢ then Franc

Franc -> do fr

end



Features
Semantic principles:
e only one transition can be fired per cycle
e only one active state per automaton, hierarchical level and cycle
Transitions and states

e two kinds: Strong or Weak delayed

o 0 O U

e both can be “by history” (H* in UML) or not (if not, both the SSM and the

data-flow in the target state are reseted



Strong vs Weak Preemption

let node weak_switch on = o where
automaton
False -> do o = false until on then True
| True -> do o = true until on then False

end

let node strong_switch on = o where
automaton
False -> do o = false unless on then True
| True -> do o = true unless on then False

end



Equations and expressions in states

flows are defined in the states (state actions)
a flow must be defined only once per cycle

the “pre” is local to its upper state (pre e gives the previous value of e, the

last time e was alive)

the substitution principle of Lustre is still true at a given hierarchy =
data-flow diagrams make sense!

the notation last x gives access to the latest value of x in its scope (Mode
Automata in the Maraninchi & Rémond sense)



Mode Automata, a simple example

Up Down
4 \1 x=5 N
x =0 —> last x + Xx = last x - 1
N X = -3 L Y,
x=01234543210-1-2-3-4-5-4-3-2-10
let node two _modes () = x where

rec automaton

O -> last x + 1

5 continue Down

last x - 1

Up -> do x =
until x =

| Down -> do x
until x

end

= -5 continue Up




(& off 2
Percent ™
Focel Throttle Cmd
real N
N e E—
0.0 "
Cruise Speed
\ w
<1>
off s

The Cruise Control with Scade 6

On
(6 Regulation
(6
RegulOn s
accele
not
between /
. <1
cruise_speed Percent AN Percent ™\ !
| > Speed Regul; / ;
Throttle Cmd Fecel Throttle Cmd
Speed
Intermupt
\,
Percent ™\
/
Focel Throttle Cmd
bool 1
|— — <>
On Re e
| > bool !
Set
bool cruise_speed N\
CruiseSpeedhigt ————
Quick Accel Cruise Speed
| bogl
Quick Decel
| Spead
Speed bool -
spesatina [ oo ——] )2
between
9 \
| Percent
Brake b

el

PedalsPressed | bool

brake

Fecel

accelerator




The extended language

- | last x

DandD |z =e

matchewithC — D ...C — D
reset D everye

automaton S — us...S —us

let Dinu | do D w
unless e then S s | unless e continue S s | €

until e then S w | until e continue S w | €



Translation semantics

e several steps in the compiler, each of them eliminating one new construction
e must preserve types (in the general sense)
Several steps

e compilation of the automaton construction into control structures
(match/with)

e compilation of the reset construction between equations into the basic reset

e climination of shared memory last x



Translation

T(reset D every e) = letx = T(e)in CReset, T(D)
where = & fu(D) U fu(e)
CMatch (T (e))

(Cr = (T(D1), Def(D1)))

T(match e with Cy — Dy ... C,, — D)

(Cn — (T(Dy), Def (Dy)))
T(automaton S; — u1 S1 ... Sy — Uy Sp) = CAutomaton

(51 = (Ts, (u1), Ts, (s1)))

(Sn = (T, (un), Ts,(sn)))



Static analysis

e they should mimic what the translation does

e well typed source programs must be translated into well typed basic programs
Typing: easy

e check unicity of definition (SSA form)

e can we write last x for any variable?

e possible confusion with the regular pre
Clock calculus: easy under the following conditions

e free variables inside a state are all on the same clock

e the same for shared variables

e corresponds exactly to the translation semantics into merge



Initialization analysis

More subttle: must take into account the semantics of automata

let node two x = o where
rec automaton
S1 -> do o =0 -> last o + 1
until x continue S2
| S2 -=> do o = last o - 1 until x continue Si

end

o is clearly well defined. This information is hidden in the translated program.

let node two x = o where rec
o = merge s (S1 -> 0 -> (pre o) when Si1(s) + 1)
(82 -> (pre o) when S2(s) - 1)
and
ns = merge s (S1 -> if x when S1(s) then S2 else S1)
(S2 -> if x when S2(s) then S1 else S2)
and

clock s = S1 -> pre ns



This program is not well initialized:

let node two x = o where
automaton
S1 -> do o =0 ->last o + 1
unless x continue S2
| S2 -=> do o = last o - 1

until x continue S1 end
e we can make a local reasonning
e because at most two transitions are fired during a reaction (strong to weak)

e compute shared variables which are necessarily defined during the initial

reaction

e intersection of variables defined in the initial state and variables defined in the

successors by a strong transition

e implemented in Lucid Synchrone (soon in ReL.uC)



Conclusion and Future work

An extension of a data-flow language with automata constructs
various kinds of transitions, yet quite simple

translation semantics relying on the clock mechanism which give a good
discipline

the existing code generator has not been modified and the code is (surprisingly)
efficient

fully implemented in Lucid Synchrone (next release V3)
integration in Scade 6 is under way
adding pure and valued signals, final states, etc.

formal certification of the translation inside a proof assistant



