
A Conservative Extension of Synchronous
Data-flow with State Machines a

Jean-Louis Colaço, Bruno Pagano

Esterel-Technologies (France)

Marc Pouzet

Université Paris-Sud (France)

IFIP WG 2.11, Dagstuhl
Jan. 26th, 2006

apresented at EMSOFT 05

1

Designing Mixed Systems

Data dominated Systems: continuous and multi-sampled systems,
block-diagram formalisms
↪→ Simulation tools: MathWorks/Simulink, etc.
↪→ Programming languages: Scade/Lustre, Signal, etc.

Control dominated systems: transition systems, event-driven systems, Finite
State Machine formalisms
↪→ MathWorks/StateFlow, StateCharts
↪→ SyncCharts, Esterel, etc.

What about mixed systems?

• most system are a mix of the two kinds: systems have “modes”

• each mode is a big control law, naturally described as data-flow equations

• a control part switching these modes and naturally described by a FSM

2

Extending Scade/Lustre with State Machines

Scade/Lustre:

• data-flow style with synchronous semantics

• certified code generator

Motivations

• activation conditions between several “modes”

• arbitrary nesting of automata and equations

• well integrated, inside the same language (tool)

• in a uniform formalism (code certification, code quality, readability)

• be conservative: accept all Scade/Lustre and keep the semantics of the kernel

• which can be formely certified (to meet avionic constraints)

• efficient code, keep (if possible) the existing certified code generator

3

First approach: linking mechanisms

• two (or more) specific languages: one for data-flow and one for control-flow

• “linking” mechanism. A sequential system is more or less represented as a pair:

– a transition function f : S × I → O × S

– an initial memory M0 : S

i

(conbinatorial)

M

f
o

• agree on a common representation and add some glue code

• this is provided in most academic and industrial tools

• PtolemyII, Simulink + StateFlow, Lustre + Esterel Sudio SSM, etc.

4

An example: the Cruise Control (SCADE V4.2)

5

Observations

• automata can only appear at the leaves of the data-flow model: we need a finer
integration

• forces the programmer to make decisions at the very beginning of the design
(what is the good methodology?)

• the control structure is not explicit and hidden in boolean values: nothing
indicate that modes are exclusive

• code certification?

• efficiency/simplicity of the code?

• how to exploit this information for program analysis and verification tools?

6

Second approach: designing a “language” extension

Mode automata (Lustre): Maraninchi & Rémond [ESOP98, SCP03]

• Lustre + automata: states are made of Lustre equations

• specific compilation method, generates good code

• restriction on the Lustre language, on the type of transitions

Lucid Synchrone V2: Hamon & Pouzet [PPDP00,SLAP04]

• extend Lustre with a modular reset, no restriction

• rely on the clock mechanism to express control structures in a safe way

• no particular syntax (manual encoding of automata), hard to program with

7

Our Proposal

• extend a basic clocked calculus (Lustre) with automata constructions

Two implementations

• ReLuC compiler of Scade/Lustre at Esterel-Technologies

• Lucid Synchrone language and compiler

8

Principles

• accept to limit the expressivity, provided safety can be ensured easilly

• do not ask too much to a compiler: only provide automata constructs which
compile well

• keep things simple: one definition of a flow during a reaction, one active state,
substitution principle

• use clocks to give a precise semantics: we know how to compile clocked
data-flow programs efficiently

• give a translation semantics into the basic data-flow language

• type and clock preserving source-to-source transformation

– T : ClockedBasicCalculus + Automata → ClockedBasicCalculus

– H ` e : ty then H ` T (e) : ty H ` e : cl then H ` T (e) : cl

9

A clocked data-flow basic calculus

Expressions:

e ::= C | x | pre (e) | e -> e | (e, e) | x(e)

| x(e) every e

| e when C(e)

| merge e (C → e) ... (C → e)

Equations:

D ::= D andD | x = e

Enumerated types:

td ::= type t | type t = C1 + ... + Cn | td; td

Basics:

• synchronous data-flow semantics, type system, clock calculus, etc.

• efficient compilation into sequential imperative code

10

N-ary Merge

merge combines two complementary flows (flows on complementary clocks) to
produce a faster one:

Merge

.. b1b2b3b4b5b6b7

.. a2 a1

.. b1b2b3b4b5b6b7 a1a2a3

a3

Example: merge c (a when c) (b whenot c)

Generalization:

• can be generalized to n inputs with a specific extension of clocks with
enumerated types

• the sampling e when c is written e when True(c)

• the semantics extends naturally and we know how to compile it efficiently

• thus, a good basic for compilation

11

Reseting a behavior

• in Scade/Lustre, the “reset” behavior of an operator must be explicitely
designed with a specific reset input

let node count () = s where

rec s = 0 -> pre s + 1

let node resetable_counter r = s where

rec s = if r then 0 else 0 -> pre s + 1

• painful to apply on large model

• propose a primitive that applies on node instance and allow to reset any node
(no specific design condition)

12

Modularity and reset

Specific notation in the basic calculus: x(e) every c

• all the node instances used in the definition of node x are reseted when the
boolean c is true

is-it a primitive construct? yes and no

• modular translation of the basic language with reset into the basic language
without reset [PPDP00]

• essentially adds a wire everywhere in the program

• e1 -> e2 becomes if c then e1 else e2

• very demanding to the code generator whereas it is trivial to compile!

• useful translation for verification tools, basic for compilation

• thus, a good basic for compilation

13

Automata extension

• Scade/Lustre implicit parallelism of data-flow diagrams

• automata can be composed in parallel with these diagrams

• hierarchy: a state can contain a parallel composition of automata and data-flow

• each hierarchy level introduces a new lexical scope for variables

14

An example: the Franc/Euro converter

eu = v/6.55957;

c

cc

v fr

eu

EuroFranc

fr = v; fr = v*6.55957;

eu = v;

in concrete (Lucid Synchrone) syntax:

let node converter v c = (euro, fr) where

automaton

Franc -> do fr = v and eur = v / 6.55957

until c then Euro

| Euro -> do fr = v * 6.55957 and eu = v

until c then Franc

end

15

Features

Semantic principles:

• only one transition can be fired per cycle

• only one active state per automaton, hierarchical level and cycle

Transitions and states

• two kinds: Strong or Weak delayed

• both can be “by history” (H* in UML) or not (if not, both the SSM and the
data-flow in the target state are reseted

16

Strong vs Weak Preemption

let node weak_switch on = o where

automaton

False -> do o = false until on then True

| True -> do o = true until on then False

end

let node strong_switch on = o where

automaton

False -> do o = false unless on then True

| True -> do o = true unless on then False

end

17

Equations and expressions in states

• flows are defined in the states (state actions)

• a flow must be defined only once per cycle

• the “pre” is local to its upper state (pre e gives the previous value of e, the
last time e was alive)

• the substitution principle of Lustre is still true at a given hierarchy ⇒
data-flow diagrams make sense!

• the notation last x gives access to the latest value of x in its scope (Mode
Automata in the Maraninchi & Rémond sense)

18

Mode Automata, a simple example

x = 0 1 2 3 4 5 4 3 2 1 0 −1 −2 −3 −4 −5 −4 −3 −2 −1 0 ...

Up Down

x = last x − 1x = 0 −> last x + 1

H

H
x = 5

x = −5

let node two_modes () = x where

rec automaton

Up -> do x = 0 -> last x + 1

until x = 5 continue Down

| Down -> do x = last x - 1

until x = -5 continue Up

end

19

The Cruise Control with Scade 6

20

The extended language

e ::= · · · | last x

D ::= D andD | x = e

| match e with C → D ... C → D

| reset D every e

| automaton S → u s ... S → u s

u ::= letD inu | do D w

s ::= unless e then S s | unless e continue S s | ε
w ::= until e then S w | until e continue S w | ε

21

Translation semantics

• several steps in the compiler, each of them eliminating one new construction

• must preserve types (in the general sense)

Several steps

• compilation of the automaton construction into control structures
(match/with)

• compilation of the reset construction between equations into the basic reset

• elimination of shared memory last x

22

Translation

T (reset D every e) = letx = T (e) inCResetx T (D)

where x 6∈ fv(D) ∪ fv(e)

T (match e with C1 → D1 ... Cn → Dn) = CMatch (T (e))

(C1 → (T (D1),Def (D1)))

...

(Cn → (T (Dn),Def (Dn)))

T (automaton S1 → u1 s1 ... Sn → un sn) = CAutomaton

(S1 → (TS1(u1),TS1(s1)))

...

(Sn → (TSn(un),TSn(sn)))

23

Static analysis

• they should mimic what the translation does

• well typed source programs must be translated into well typed basic programs

Typing: easy

• check unicity of definition (SSA form)

• can we write last x for any variable?

• possible confusion with the regular pre

Clock calculus: easy under the following conditions

• free variables inside a state are all on the same clock

• the same for shared variables

• corresponds exactly to the translation semantics into merge

24

Initialization analysis

More subttle: must take into account the semantics of automata

let node two x = o where

rec automaton

S1 -> do o = 0 -> last o + 1

until x continue S2

| S2 -> do o = last o - 1 until x continue S1

end

o is clearly well defined. This information is hidden in the translated program.

let node two x = o where rec

o = merge s (S1 -> 0 -> (pre o) when S1(s) + 1)

(S2 -> (pre o) when S2(s) - 1)

and

ns = merge s (S1 -> if x when S1(s) then S2 else S1)

(S2 -> if x when S2(s) then S1 else S2)

and

clock s = S1 -> pre ns

25

This program is not well initialized:

let node two x = o where

automaton

S1 -> do o = 0 -> last o + 1

unless x continue S2

| S2 -> do o = last o - 1

until x continue S1 end

• we can make a local reasonning

• because at most two transitions are fired during a reaction (strong to weak)

• compute shared variables which are necessarily defined during the initial
reaction

• intersection of variables defined in the initial state and variables defined in the
successors by a strong transition

• implemented in Lucid Synchrone (soon in ReLuC)

26

Conclusion and Future work

• An extension of a data-flow language with automata constructs

• various kinds of transitions, yet quite simple

• translation semantics relying on the clock mechanism which give a good
discipline

• the existing code generator has not been modified and the code is (surprisingly)
efficient

• fully implemented in Lucid Synchrone (next release V3)

• integration in Scade 6 is under way

• adding pure and valued signals, final states, etc.

• formal certification of the translation inside a proof assistant

27

