
Adventures in
Dependently-Typed
Metatheory
Work in Progress
Joint work with Limin Jia, Jianzhou Zhao, and Vilhelm
Sjöberg

What are dependent types?

   Types that depend on elements of other types.

   Examples:

   vec n – type of lists of length in

   vec n m – type of n x m matrices

   Type of trees that satisfy binary search tree invariant

   Type of ASTs that represent well-typed code

   Statically enforce expressive program properties

   BST ops preserve BST invariants

   tagless, staged interpreters

   CompCert compiler

Dependent types today

   Umbrella term for many languages that permit

expressive static checking

Full Spectrum Phase-sensitive

Types indexed by actual
computations

Types indexed by a pure language,
separate from computations

Type checking involves deciding
program equivalence

Easier to decide type equality, as
only pure expressions are involved

Easier to connect type system to
actual computation, harder to
extend computation language

Index language may have minimal
similarity to computation language

Includes "strong eliminators"
if x=3 then Bool else Int

May not include strong eliminators

Examples: Cayenne, Coq, Epigram,
Agda2, Guru

Examples: DML, ATS, Ωmega,
Haskell

Full spectrum: Lambda Cube

   One syntactic class, no distinction between types and terms

 s,t,A,B,k ::= x | \x.t | s t | (x:A) -> B 	

 | * | [] | c | case s { c x => t }	

   One set of formation rules:

 G |- t : A	

   Conversion rule to decide type equivalence

G |- t : A G |- B : s A ~ B	

G |- t : B	

Full-spectrum types

   Problem: full-spectrum type systems do not interact
well with full programming languages

   Single definition of equivalence for types and terms

   Type soundness depends on properties of equivalence
that be must proven early in the development

   Need to know int != bool

   Additions to the programming language requires
significant restructuring of the definition of
equivalence (fix, state, effects, etc.)

New vision

   Syntactic distinction between terms and types (computations)

   Still full spectrum, types depend on computation

k ::= * | (x:A) -> k	

A, B ::= (x:A) -> B | T | A t 	

 | case t of {c x => A}	

t ::= x | \x. t | t u | c 	

 | case t of {c x => t} | fix x:A . t	

Key changes:

 term language explicitly includes non-termination

 different definitions of equality for types and terms

Parameterized term equality

Given a list of equality assumptions about terms:

 D ::= . | D (t1 = t2)	

Assume the existence of two (partial) functions:

 con (D) in { true, maybe, false }	

	isEq (D, t1, t2) in { true, maybe }	

Type equivalence depends on
parameterized term equivalence

con (G*) = false	

G |- t1 = t2 : k	

G |- A1 = A2 : (x:B) -> k isEq (G*, t1 t2)=true	

G |- A1 t1 = A2 t2 : k	

isEq (G*, t, c t1)=true G, t = c t1 |- t2 : k	

G |- case t of { c x => t2 } = t2 { t1 / x } : k	

Questions to answer

   What properties of isEq/Con must we assume
to show preservation & progress?

   What instantiations of isEq/Con satisfy these
properties?

Necessary assumptions (con)

   Start consistent
con(.) = true	

   Once inconsistent, stay inconsistent through weakening,
substitution, cut and conversion 

•  con (D) = false => con (D D’) = false	

•  con (D) = false => con (D {e/x}) = false	

•  con (D (e1 = e2) D’) = false & isEq (D, e1, e2) => 	
	con (D D’) = false 

•  con(D) = false & (D = D’) => con(D’) = false	

Necessary assumptions (isEq)

   isEq is an equivalence class

   Holds for evaluation: If e -> e’ then isEq (D, e, e’)	

   Constructors are injective, for (possibly) consistent contexts
con(D) /= false & isEq(D, ci e1, cj e2) => 	
isEq(D, e1, e2) & i=j	

   Preserved by substitution
isEq(D, e1, e2) => isEq (D{e/x}, e1{e/x}, e2{e/x})	

   Preserved under contextual operations (weakening, cut,
conversion)
isEq (D (e = e’) D’, e1, e2) & isEq(D, e, e’) => 	
isEq (D,D’, e1, e2) 	

What satisfies these properties?

   Trivial equality that only compares normal forms,
ignoring equalities in the context

   This is the weakest (finest) equality that satisfies the

assumptions

   Above plus equalities in the context

   Version that erases “irrelevant” information before
normalization

   Coarser equalities that identify more terms, cf.
contextual equivalence

What about termination?

   Termination analysis not required for type soundness

   Decidable version of isEq is type sound, but doesn’t satisfy

preservation

   Progress requires CBV semantics

   However, like most type systems, only get partial
correctness results:

   “If this expression terminates, then it produces a value of

type t”

   Termination analysis permits proof erasure

   Otherwise, must run proofs to make sure they are not bogus

More questions

   Can we give more information about typing to Con and
isEq?

   For now, we want to make axiomatization of isEq

independent of the type system, but does that buy us
anything?

   Useful to add inDom predicate to control what
expressions are compared for equality?

   What about more computational effects: state/control
effects?

   Can we use effect typing to strengthen equivalence?

Conclusion

   Metatheory for full-spectrum dependently-typed languages is
complex, highly entangled

   Canonical forms lemmas require deep reasoning about

program equivalence

   Our current definitions are algorithmic to permit inversion

lemmas

   Parameterizing term equality allows us to reuse results

   Don’t fix decision procedure for program equivalence a priori

   The fundamental structure of the type soundness proof

shouldn’t change when new features are added to the
computation language

