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What are dependent types? 


   Types that depend on elements of other types.  


   Examples: 

   vec n – type of lists of length in 


   vec n m – type of n x m matrices 


   Type of trees that satisfy binary search tree invariant 


   Type of ASTs that represent well-typed code 


   Statically enforce expressive program properties 

   BST ops preserve BST invariants 


   tagless, staged interpreters 


   CompCert compiler 



Dependent types today 

   Umbrella term for many languages that permit 

expressive static checking 

Full Spectrum Phase-sensitive 

Types indexed by actual 
computations 

Types indexed by a pure language, 
separate from computations 

Type checking involves deciding 
program equivalence 

Easier to decide type equality, as 
only pure expressions are involved 

Easier to connect type system to 
actual computation, harder to 
extend computation language 

Index language may have minimal 
similarity to computation language 

Includes "strong eliminators"  
if x=3 then Bool else Int 

May not include strong eliminators 

Examples: Cayenne, Coq, Epigram, 
Agda2, Guru 

Examples: DML, ATS, Ωmega, 
Haskell 



Full spectrum: Lambda Cube 


   One syntactic class, no distinction between types and terms 

 s,t,A,B,k ::=  x | \x.t | s t | (x:A) -> B 	

              | * | [] | c | case s { c x => t }	

   One set of formation rules: 

                   G |- t : A	

   Conversion rule to decide type equivalence 

G |- t : A    G |- B : s    A ~ B	

G |- t : B	



Full-spectrum types 


   Problem: full-spectrum type systems do not interact 
well with full programming languages 

   Single definition of equivalence for types and terms 


   Type soundness depends on properties of equivalence 
that be must proven early in the development 

   Need to know int != bool 


   Additions to the programming language requires 
significant restructuring of the definition of 
equivalence (fix, state, effects, etc.) 



New vision 

   Syntactic distinction between terms and types (computations) 


   Still full spectrum, types depend on computation 

k    ::=  * | (x:A) -> k	

A, B ::= (x:A) -> B | T | A t  	

      |  case t of {c x => A}	

t    ::= x | \x. t |  t u | c  	

      | case t of {c x => t} | fix x:A . t	

Key changes:  

 term language explicitly includes non-termination 

 different definitions of equality for types and terms  



Parameterized term equality 

Given a list of equality assumptions about terms: 

 D ::= . |  D (t1 = t2)	

Assume the existence of two (partial) functions: 

 con (D) in { true, maybe, false }	

	isEq (D, t1, t2)  in { true, maybe }	



Type equivalence depends on 
parameterized term equivalence 

con (G*) = false	

G |- t1 = t2 : k	

G |- A1 = A2 : (x:B) -> k     isEq (G*, t1 t2)=true	

G |- A1 t1 = A2 t2 : k	

isEq (G*, t, c t1)=true    G, t = c t1 |- t2 : k	

G |- case t of { c x => t2 } = t2 { t1 / x } : k	



Questions to answer 


   What properties of isEq/Con must we assume 
to show preservation & progress? 


   What instantiations of isEq/Con satisfy these 
properties? 



Necessary assumptions (con) 


   Start consistent 
con( . ) = true	


   Once inconsistent, stay inconsistent through weakening, 
substitution, cut and conversion 

•  con (D) = false => con (D D’) = false	

•  con (D) = false => con (D {e/x} ) = false	

•  con (D (e1 = e2) D’) = false & isEq (D, e1, e2) => 	
	con (D D’) = false 

•  con(D) = false & (D = D’) => con(D’) = false	



Necessary assumptions (isEq) 

   isEq is an equivalence class 


   Holds for evaluation: If  e -> e’ then isEq (D, e, e’)	


   Constructors are injective, for (possibly) consistent contexts 
con(D) /= false & isEq(D, ci e1, cj e2) => 	
isEq(D, e1, e2) & i=j	


   Preserved by substitution 
isEq(D, e1, e2) =>  isEq (D{e/x}, e1{e/x}, e2{e/x})	


   Preserved under contextual operations (weakening, cut, 
conversion)   
isEq (D (e = e’) D’, e1, e2)  & isEq(D, e, e’) => 	
isEq (D,D’,  e1, e2)   	



What satisfies these properties? 


   Trivial equality that only compares normal forms, 
ignoring equalities in the context  

   This is the weakest (finest) equality that satisfies the 

assumptions 


   Above plus equalities in the context 


   Version that erases “irrelevant” information before 
normalization 


   Coarser equalities that identify more terms, cf. 
contextual equivalence 



What about termination? 


   Termination analysis not required for type soundness 

   Decidable version of isEq is type sound, but doesn’t satisfy 

preservation 

   Progress requires CBV semantics  


   However, like most type systems, only get partial 
correctness results: 

   “If this expression terminates, then it produces a value of 

type t” 


   Termination analysis permits proof erasure 

   Otherwise,  must run proofs to make sure they are not bogus 



More questions 


   Can we give more information about typing to Con and  
isEq? 

   For now, we want to make axiomatization of isEq 

independent of the type system, but does that buy us 
anything? 


   Useful to add inDom predicate to control what 
expressions are compared for equality? 


   What about more computational effects: state/control 
effects? 

   Can we use effect typing to strengthen equivalence? 



Conclusion 


   Metatheory for full-spectrum dependently-typed languages is 
complex, highly entangled 

   Canonical forms lemmas require deep reasoning about 

program equivalence 

   Our current definitions are algorithmic to permit inversion 

lemmas 


   Parameterizing term equality allows us to reuse results 

   Don’t fix decision procedure for program equivalence a priori 

   The fundamental structure of the type soundness proof 

shouldn’t change when new features are added to the 
computation language 


