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Motivation: analysis debugging

● Typical scenario:
○ you are the developer of some useful static analysis
○ a user encounters a problem with your analysis (e.g., a crash, 

wrong output, etc.)
○ the user helpfully reports the bug

■ but usually without a small, reproducible test case
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Traditional solution: program reduction

● Underlying algorithm: delta debugging
○ uses divide-and-conquer to find a minimal “interesting” 

subset of a given target set
○ relies on the presence of a runnable oracle for “interesting”

● Program reduction today:
○ “interesting” = “does running the analysis on the program 

cause the bug we’re interested in”
○ C-Reduce, Perses (ICSE 2018) work this way
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Traditional solution: program reduction

● Delta-debugging based program reduction is a dynamic analysis
○ that is, it requires us to run the analysis that we are 

debugging repeatedly
■ works fine for fast, easy-to-deploy analyses (e.g., a C 

compiler)
○ what about heavier-weight analyses (e.g., program verifiers)?

■ e.g., the analysis in the example at the beginning is a “fast” 
resource leak verifier, but it still runs in tens of minutes 
on realistically-sized Java programs

Result: in practice, analysis 
developers don’t use program 
reduction (it’s too slow)
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Static program reduction

● For any given dynamic analysis, there is usually a static analysis 
that could achieve the same goal (and vice-versa)
○ but usually with different tradeoffs

■ a static program reduction technique wouldn’t have to 
scale with the cost of running the underlying analysis

● What are the barriers to static program reduction?
○ if we can’t run the analysis whose output we’re trying to 

preserve, how do what know what parts of the program can 
be removed?
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Key insight: modularity

● most analyses we’re interested in are modular
○ that is, for performance reason they don’t perform arbitrary 

interprocedural analysis
● if we can formalize modularity, we can use that definition to 

build a static program reducer:
○ intuitively, modularity tells us what other program elements 

can be considered when analyzing a target program element
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Specification slicing

Key theorem: a specification slicer preserves the compile-time 
behavior of a target program P (with respect to a modular program 
analysis V) at some target program location L

cf. “traditional” slicing: a “traditional” slicer preserves the run-time 
behavior of a target program P (with respect to concrete execution) 
at some target program location L

You can think of this as 
“abstract” slicing, in the sense 
of “abstract interpretation”
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Specification slicing: algorithm

Input: program P, location L in P, and definition of modularity M
● M is a syntax-directed map from kinds of program elements to 

related program elements that the analysis of interest considers
○ e.g., M(“field read expression”) might be “field’s declaration, 

type of field, receiver expression”
○ M can be reused between similar analyses

■ e.g., javac, Checker Framework, OpenJML all have 
approximately the same M for Java
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Algorithm:
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Specification slicing: algorithm

Input: program P, location L in P, and definition of modularity M

Algorithm:
worklist = all elements e in L’s scope
slice = ∅
while (worklist is not empty):
    toPreserve = worklist.pop()
    if (!slice.contains(toPreserve)):
         slice.add(toPreserve)
         worklist.add(M(toPreserve))
return slice
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Specification slicing: examples

● remove bodies of used methods
● primitive field reads
● a more complex example with unsolved symbols
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Specification slicing: unsolvable symbols

● So far, we have assumed that all symbols are solvable
○ that is, we’re assuming that we have the whole program

● In practice, we often can’t easily access the whole program
○ e.g., it would require human effort to go collect the classpath 

of the target program in the example
■ need to run the build tool, etc.

○ this is an impediment to using a specification slicer in a 
fully-automated system
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minimize incomplete programs
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Specification slicing: unsolvable symbols

● An advantage of static program reduction is that we can 
minimize incomplete programs
○ however, minimizing an incomplete program may introduce 

ambiguity into the modularity model
○ for example, suppose the program reads a field that’s not 

defined. More than one option for where to put that field:
■ the immediate superclass
■ the superclass’ superclass
■ etc.
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Specification slicing: exact vs approximate

● Our practical specification slicer has two modes:
○ exact mode: access to the whole program is assumed, and the 

slicer relies on that to find the definitions of program elements
■ this mode works just like the algorithm a few slides ago

○ approximate mode: when the slicer finds a symbol it can’t solve, 
it generates a program element that makes sense in context
■ uses heuristics to deal with ambiguity
■ but not guaranteed to preserve analysis behavior (even if 

modularity model is correct) if there is ambiguity
40



Specification slicing: project status

● We have a prototype for modular analyses of Java: 
○ https://github.com/kelloggm/specimin

● Currently dealing with:
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Specification slicing: project status

● We have a prototype for modular analyses of Java: 
○ https://github.com/kelloggm/specimin

● Currently dealing with:
○ a long tail of engineering effort to get the approximate mode 

heuristics right
○ getting the modularity model formalization exactly right

● But we are getting closer to both

43

https://github.com/kelloggm/specimin
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Static program reduction: usefulness

● Zooming out, why study program reduction?
○ it’s a useful debugging tool for analyses on its own, but…

● A fast program reduction technique that is guaranteed to 
preserve analysis behavior unlocks interesting use cases!
○ staying under the token limit when combining an LLM + a 

modular analysis
○ analyzing only a changeset instead of the whole program
○ running an analysis in a tight loop
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definitely going to talk about this
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● There’s a lot of excitement around the idea of combining LLMs + 
sound program analyzers (CEGAR-style)

● One hurdle so far is the token limit of LLMs
○ realistically-sized programs don’t fit!

● Program reduction is an obvious solution to this problem
○ but traditional program reduction techniques are slow
○ for fully-automated systems, static program reduction:

■ allows the verifier to interact honestly with the LLM
■ is faster than dynamic techniques and can operate on 

incomplete programs
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● Consider a system that:
○ chooses a method in an open-source project

Note that an approximate slicer 
means we don’t even need to be 
able to build the target project - 
it can be anything!
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● Consider a system that:
○ chooses a method in an open-source project
○ uses static program reduction to shrink that method
○ runs a verification tool on the method, making pessimistic 

assumptions about the input
○ if there is a warning, calls an LLM and asks it to write a patch
○ re-runs the verifier on the patch

■ if it passes, we have fully-automatically produced a 
bug-fixing pull request 
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● Consider this bug in Netflix’s spinnaker project: 
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce:
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● Consider this bug in Netflix’s spinnaker project: 
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce:

import java.util.concurrent.*;
import java.util.concurrent.locks.Lock;
import org.checkerframework.framework.qual.DefaultQualifier; // for CF Nullness
import org.checkerframework.framework.qual.TypeUseLocation;
import org.checkerframework.checker.nullness.qual.Nullable;

@DefaultQualifier(value = Nullable.class, locations = TypeUseLocation.PARAMETER)
class CallableCache<Key, Result> {
  private final ConcurrentHashMap<Key, Future<Result>> cache = null;
  private final Lock lock = null;
  private static final org.slf4j.Logger log 
     = org.slf4j.LoggerFactory.getLogger(CallableCache.class);

  void clear(Key key) {
    try {
      lock.lock();
      var future = cache.get(key);
      if (future != null && (future.isDone() || future.isCancelled())) {
        cache.remove(key);
        log.debug("Removing element from cache identified by key: " + key);
      }
    } finally {
      lock.unlock();
    }
  }
}

https://github.com/spinnaker/spinnaker/issues/6856
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● Consider this bug in Netflix’s spinnaker project: 
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce…
● Running a nullability analysis produces:

CallableCache.java:16: error: [argument] incompatible argument for parameter 
key of ConcurrentHashMap.get.
      var future = cache.get(key);
                             ^
  found   : Key extends @Initialized @Nullable Object
  required: @Initialized @NonNull Object

https://github.com/spinnaker/spinnaker/issues/6856
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● Consider this bug in Netflix’s spinnaker project: 
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce…
● Running a nullability analysis produces…
● Prompting an LLM (GPT 3.5) with the code and the warning I’ve 

just shown you produces a fix that passes the typechecker:

https://github.com/spinnaker/spinnaker/issues/6856
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● Consider this bug in Netflix’s spinnaker project: 
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce…
● Running a nullability analysis produces…
● Prompting an LLM (GPT 3.5) with the code and the warning I’ve 

just shown you produces a fix that passes the typechecker:

void clear(Key key) {
  try {
    lock.lock();
    Key nonNullKey = key;
    if (nonNullKey != null) {
      var future = cache.get(nonNullKey);
      if (future != null && (future.isDone() || future.isCancelled())) {
        cache.remove(nonNullKey);
        log.debug("Removing element from cache identified by key: " + nonNullKey);
      }
    }
  } finally {
    lock.unlock();
  }
}

LLM’s fix

https://github.com/spinnaker/spinnaker/issues/6856
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● Consider this bug in Netflix’s spinnaker project: 
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce…
● Running a nullability analysis produces…
● Prompting an LLM (GPT 3.5) with the code and the warning I’ve 

just shown you produces a fix that passes the typechecker…
○ that is very similar to the real human fix that was merged

https://github.com/spinnaker/spinnaker/issues/6856
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● Consider this bug in Netflix’s spinnaker project: 
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce…
● Running a nullability analysis produces…
● Prompting an LLM (GPT 3.5) with the code and the warning I’ve 

just shown you produces a fix that passes the typechecker:

  void clear(Key key) {
    if (key == null) {
      return;
    }
    try {
      lock.lock();
      var future = cache.get(key);
      if (future != null && (future.isDone() || future.isCancelled())) {
        cache.remove(key);
        log.debug("Removing element from cache identified by key: " + key);
      }
    } finally {
      lock.unlock();
    }
  }

human fix

https://github.com/spinnaker/spinnaker/issues/6856


Example fully-automated system

69

● Consider this bug in Netflix’s spinnaker project: 
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce…
● Running a nullability analysis produces…
● Prompting an LLM (GPT 3.5) with the code and the warning I’ve 

just shown you produces a fix that passes the typechecker…
○ that is very similar to the real human fix that was merged

■ LLM’s fix locks and then unlocks the lock unnecessarily :(
■ but could have fixed the bug fully automatically, without 

any human intervention (except to review the PR)

https://github.com/spinnaker/spinnaker/issues/6856
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● static program reduction could be a useful debugging aid for 
modular program analyses
○ specification slicing exploits analysis modularity to accomplish 

static program reduction
● fast, sound static program reduction unlocks new use cases:

○ LLMs + analysis for fully-automated code improvement
○ code-review-time verification, verifier-guided refactoring, etc.

● prototype specification slicer for Java:
○ https://github.com/kelloggm/specimin

Thanks to all of my collaborators who 
have made this work possible: Loi Nguyen, 
Tahiatul Islam, Jonathan Phillips, Oscar 
Chaparro, Michael Ernst, et al.

https://github.com/kelloggm/specimin
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● Code review time verification
● VGR
● More involved Specimin example in slideware (not finished)
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● Modular analyses typically require users to write specifications
○ e.g., type annotations for a pluggable typechecker

● This is an obstacle to adoption of such analyses
○ doesn’t match how developers work with legacy code, which 

happens at changeset granularity (i.e., code review)
● Idea: what if we could analyze just a changeset in isolation?

○ and ask developers to write specs just for what has changed
○ we can use our static program reducer to do this
○ key scientific question: will specs written this way for many 

changesets contradict each other or tend to converge?
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● Motivation: sound program analyses always have false positives
● Many semantics-preserving program transformations exist
● Idea: if an analysis is sound and can verify any variant of a piece 

of code created by applying only semantics-preserving 
transformations, then the code is definitely safe
○ requires us to run the verifier in a tight loop on many variants

■ too expensive if we’re considering the whole program
■ our fast, sound static program reducer allows the analysis 

to run much faster in such a loop -> makes this practical?



Specification slicing: example

boolean isLiteral = false;
try {
  String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION);
  AbstractType<?> validator = column.cellValueType();
  isLiteral = literalOption == null ? 
   (validator instanceof UTF8Type || validator instanceof AsciiType)
     : Boolean.parseBoolean(literalOption);
} catch (Exception e){
  logger.error("failed to parse {} option, defaulting to 'false'.", 
     INDEX_IS_LITERAL_OPTION);
}

90



Specification slicing: example

boolean isLiteral = false;
try {
  String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION);
  AbstractType<?> validator = column.cellValueType();
  isLiteral = literalOption == null ? 
   (validator instanceof UTF8Type || validator instanceof AsciiType)
     : Boolean.parseBoolean(literalOption);
} catch (Exception e){
  logger.error("failed to parse {} option, defaulting to 'false'.", 
     INDEX_IS_LITERAL_OPTION);
}

This is the code from the 
example at the beginning 
of the talk
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Specification slicing: example

boolean isLiteral = false;
try {
  String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION);
  AbstractType<?> validator = column.cellValueType();
  isLiteral = literalOption == null ? 
   (validator instanceof UTF8Type || validator instanceof AsciiType)
     : Boolean.parseBoolean(literalOption);
} catch (Exception e){
  logger.error("failed to parse {} option, defaulting to 'false'.", 
     INDEX_IS_LITERAL_OPTION);
}

preserved (+ its type…)
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Specification slicing: example

boolean isLiteral = false;
try {
  String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION);
  AbstractType<?> validator = column.cellValueType();
  isLiteral = literalOption == null ? 
   (validator instanceof UTF8Type || validator instanceof AsciiType)
     : Boolean.parseBoolean(literalOption);
} catch (Exception e){
  logger.error("failed to parse {} option, defaulting to 'false'.", 
     INDEX_IS_LITERAL_OPTION);
}

preserved (+ wherever it is defined…)
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Specification slicing: example

boolean isLiteral = false;
try {
  String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION);
  AbstractType<?> validator = column.cellValueType();
  isLiteral = literalOption == null ? 
   (validator instanceof UTF8Type || validator instanceof AsciiType)
     : Boolean.parseBoolean(literalOption);
} catch (Exception e){
  logger.error("failed to parse {} option, defaulting to 'false'.", 
     INDEX_IS_LITERAL_OPTION);
}

preserved (+ its supertypes…)
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Specification slicing: example

boolean isLiteral = false;
try {
  String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION);
  AbstractType<?> validator = column.cellValueType();
  isLiteral = literalOption == null ? 
   (validator instanceof UTF8Type || validator instanceof AsciiType)
     : Boolean.parseBoolean(literalOption);
} catch (Exception e){
  logger.error("failed to parse {} option, defaulting to 'false'.", 
     INDEX_IS_LITERAL_OPTION);
}

preserved (+ its supertypes…)

And so on…
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