
Static Program Reduction
via Specification Slicing

Martin Kellogg
New Jersey Institute of Technology

Motivation: analysis debugging

2

Motivation: analysis debugging

3

Motivation: analysis debugging

4

Motivation: analysis debugging

5

Motivation: analysis debugging

● Typical scenario:
○ you are the developer of some useful static analysis

6

Motivation: analysis debugging

● Typical scenario:
○ you are the developer of some useful static analysis
○ a user encounters a problem with your analysis (e.g., a crash,

wrong output, etc.)

7

Motivation: analysis debugging

● Typical scenario:
○ you are the developer of some useful static analysis
○ a user encounters a problem with your analysis (e.g., a crash,

wrong output, etc.)
○ the user helpfully reports the bug

■ but usually without a small, reproducible test case

8

Traditional solution: program reduction

● Underlying algorithm: delta debugging
○ uses divide-and-conquer to find a minimal “interesting”

subset of a given target set
○ relies on the presence of a runnable oracle for “interesting”

9

Traditional solution: program reduction

● Underlying algorithm: delta debugging
○ uses divide-and-conquer to find a minimal “interesting”

subset of a given target set
○ relies on the presence of a runnable oracle for “interesting”

● Program reduction today:
○ “interesting” = “does running the analysis on the program

cause the bug we’re interested in”
○ C-Reduce, Perses (ICSE 2018) work this way

10

Traditional solution: program reduction

● Delta-debugging based program reduction is a dynamic analysis
○ that is, it requires us to run the analysis that we are

debugging repeatedly

11

Traditional solution: program reduction

● Delta-debugging based program reduction is a dynamic analysis
○ that is, it requires us to run the analysis that we are

debugging repeatedly
■ works fine for fast, easy-to-deploy analyses (e.g., a C

compiler)

12

Traditional solution: program reduction

● Delta-debugging based program reduction is a dynamic analysis
○ that is, it requires us to run the analysis that we are

debugging repeatedly
■ works fine for fast, easy-to-deploy analyses (e.g., a C

compiler)
○ what about heavier-weight analyses (e.g., program verifiers)?

■ e.g., the analysis in the example at the beginning is a “fast”
resource leak verifier, but it still runs in tens of minutes
on realistically-sized Java programs

13

Traditional solution: program reduction

● Delta-debugging based program reduction is a dynamic analysis
○ that is, it requires us to run the analysis that we are

debugging repeatedly
■ works fine for fast, easy-to-deploy analyses (e.g., a C

compiler)
○ what about heavier-weight analyses (e.g., program verifiers)?

■ e.g., the analysis in the example at the beginning is a “fast”
resource leak verifier, but it still runs in tens of minutes
on realistically-sized Java programs

Result: in practice, analysis
developers don’t use program
reduction (it’s too slow)

14

Static program reduction

● For any given dynamic analysis, there is usually a static analysis
that could achieve the same goal (and vice-versa)
○ but usually with different tradeoffs

15

Static program reduction

● For any given dynamic analysis, there is usually a static analysis
that could achieve the same goal (and vice-versa)
○ but usually with different tradeoffs

■ a static program reduction technique wouldn’t have to
scale with the cost of running the underlying analysis

16

Static program reduction

● For any given dynamic analysis, there is usually a static analysis
that could achieve the same goal (and vice-versa)
○ but usually with different tradeoffs

■ a static program reduction technique wouldn’t have to
scale with the cost of running the underlying analysis

● What are the barriers to static program reduction?
○ if we can’t run the analysis whose output we’re trying to

preserve, how do what know what parts of the program can
be removed?

17

Key insight: modularity

18

Key insight: modularity

● most analyses we’re interested in are modular
○ that is, for performance reason they don’t perform arbitrary

interprocedural analysis

19

Key insight: modularity

● most analyses we’re interested in are modular
○ that is, for performance reason they don’t perform arbitrary

interprocedural analysis
● if we can formalize modularity, we can use that definition to

build a static program reducer:
○ intuitively, modularity tells us what other program elements

can be considered when analyzing a target program element

20

Specification slicing

Key theorem: a specification slicer preserves the compile-time
behavior of a target program P (with respect to a modular program
analysis V) at some target program location L

21

Specification slicing

Key theorem: a specification slicer preserves the compile-time
behavior of a target program P (with respect to a modular program
analysis V) at some target program location L

cf. “traditional” slicing: a “traditional” slicer preserves the run-time
behavior of a target program P (with respect to concrete execution)
at some target program location L

22

Specification slicing

Key theorem: a specification slicer preserves the compile-time
behavior of a target program P (with respect to a modular program
analysis V) at some target program location L

cf. “traditional” slicing: a “traditional” slicer preserves the run-time
behavior of a target program P (with respect to concrete execution)
at some target program location L

You can think of this as
“abstract” slicing, in the sense
of “abstract interpretation”

23

Specification slicing: algorithm

24

Specification slicing: algorithm

Input: program P, location L in P, and definition of modularity M

25

Specification slicing: algorithm

Input: program P, location L in P, and definition of modularity M
● M is a syntax-directed map from kinds of program elements to

related program elements that the analysis of interest considers

26

Specification slicing: algorithm

Input: program P, location L in P, and definition of modularity M
● M is a syntax-directed map from kinds of program elements to

related program elements that the analysis of interest considers
○ e.g., M(“field read expression”) might be “field’s declaration,

type of field, receiver expression”

27

Specification slicing: algorithm

Input: program P, location L in P, and definition of modularity M
● M is a syntax-directed map from kinds of program elements to

related program elements that the analysis of interest considers
○ e.g., M(“field read expression”) might be “field’s declaration,

type of field, receiver expression”
○ M can be reused between similar analyses

■ e.g., javac, Checker Framework, OpenJML all have
approximately the same M for Java

28

Specification slicing: algorithm

Input: program P, location L in P, and definition of modularity M

Algorithm:

29

Specification slicing: algorithm

Input: program P, location L in P, and definition of modularity M

Algorithm:
worklist = all elements e in L’s scope
slice = ∅
while (worklist is not empty):
 toPreserve = worklist.pop()
 if (!slice.contains(toPreserve)):
 slice.add(toPreserve)
 worklist.add(M(toPreserve))
return slice

30

Specification slicing: examples

● remove bodies of used methods
● primitive field reads
● a more complex example with unsolved symbols

31

Specification slicing: unsolvable symbols

● So far, we have assumed that all symbols are solvable
○ that is, we’re assuming that we have the whole program

32

Specification slicing: unsolvable symbols

● So far, we have assumed that all symbols are solvable
○ that is, we’re assuming that we have the whole program

● In practice, we often can’t easily access the whole program
○ e.g., it would require human effort to go collect the classpath

of the target program in the example
■ need to run the build tool, etc.

33

Specification slicing: unsolvable symbols

● So far, we have assumed that all symbols are solvable
○ that is, we’re assuming that we have the whole program

● In practice, we often can’t easily access the whole program
○ e.g., it would require human effort to go collect the classpath

of the target program in the example
■ need to run the build tool, etc.

○ this is an impediment to using a specification slicer in a
fully-automated system

34

Specification slicing: unsolvable symbols

● An advantage of static program reduction is that we can
minimize incomplete programs

35

Specification slicing: unsolvable symbols

● An advantage of static program reduction is that we can
minimize incomplete programs
○ however, minimizing an incomplete program may introduce

ambiguity into the modularity model

36

Specification slicing: unsolvable symbols

● An advantage of static program reduction is that we can
minimize incomplete programs
○ however, minimizing an incomplete program may introduce

ambiguity into the modularity model
○ for example, suppose the program reads a field that’s not

defined. More than one option for where to put that field:
■ the immediate superclass
■ the superclass’ superclass
■ etc.

37

Specification slicing: exact vs approximate

● Our practical specification slicer has two modes:

38

Specification slicing: exact vs approximate

● Our practical specification slicer has two modes:
○ exact mode: access to the whole program is assumed, and the

slicer relies on that to find the definitions of program elements
■ this mode works just like the algorithm a few slides ago

39

Specification slicing: exact vs approximate

● Our practical specification slicer has two modes:
○ exact mode: access to the whole program is assumed, and the

slicer relies on that to find the definitions of program elements
■ this mode works just like the algorithm a few slides ago

○ approximate mode: when the slicer finds a symbol it can’t solve,
it generates a program element that makes sense in context
■ uses heuristics to deal with ambiguity
■ but not guaranteed to preserve analysis behavior (even if

modularity model is correct) if there is ambiguity
40

Specification slicing: project status

● We have a prototype for modular analyses of Java:
○ https://github.com/kelloggm/specimin

● Currently dealing with:

41

https://github.com/kelloggm/specimin

Specification slicing: project status

● We have a prototype for modular analyses of Java:
○ https://github.com/kelloggm/specimin

● Currently dealing with:
○ a long tail of engineering effort to get the approximate mode

heuristics right

42

https://github.com/kelloggm/specimin

Specification slicing: project status

● We have a prototype for modular analyses of Java:
○ https://github.com/kelloggm/specimin

● Currently dealing with:
○ a long tail of engineering effort to get the approximate mode

heuristics right
○ getting the modularity model formalization exactly right

● But we are getting closer to both

43

https://github.com/kelloggm/specimin

Static program reduction: usefulness

● Zooming out, why study program reduction?

44

Static program reduction: usefulness

● Zooming out, why study program reduction?
○ it’s a useful debugging tool for analyses on its own, but…

45

Static program reduction: usefulness

● Zooming out, why study program reduction?
○ it’s a useful debugging tool for analyses on its own, but…

● A fast program reduction technique that is guaranteed to
preserve analysis behavior unlocks interesting use cases!

46

Static program reduction: usefulness

● Zooming out, why study program reduction?
○ it’s a useful debugging tool for analyses on its own, but…

● A fast program reduction technique that is guaranteed to
preserve analysis behavior unlocks interesting use cases!
○ staying under the token limit when combining an LLM + a

modular analysis
○ analyzing only a changeset instead of the whole program
○ running an analysis in a tight loop

47

Static program reduction: usefulness

● Zooming out, why study program reduction?
○ it’s a useful debugging tool for analyses on its own, but…

● A fast program reduction technique that is guaranteed to
preserve analysis behavior unlocks interesting use cases!
○ staying under the token limit when combining an LLM + a

modular analysis
○ analyzing only a changeset instead of the whole program
○ running an analysis in a tight loop

48

I’ll talk about these if you ask

Static program reduction: usefulness

● Zooming out, why study program reduction?
○ it’s a useful debugging tool for analyses on its own, but…

● A fast program reduction technique that is guaranteed to
preserve analysis behavior unlocks interesting use cases!
○ staying under the token limit when combining an LLM + a

modular analysis
○ analyzing only a changeset instead of the whole program
○ running an analysis in a tight loop

49

definitely going to talk about this

LLMs + program analysis

50

● There’s a lot of excitement around the idea of combining LLMs +
sound program analyzers (CEGAR-style)

LLMs + program analysis

51

● There’s a lot of excitement around the idea of combining LLMs +
sound program analyzers (CEGAR-style)

● One hurdle so far is the token limit of LLMs
○ realistically-sized programs don’t fit!

LLMs + program analysis

52

● There’s a lot of excitement around the idea of combining LLMs +
sound program analyzers (CEGAR-style)

● One hurdle so far is the token limit of LLMs
○ realistically-sized programs don’t fit!

● Program reduction is an obvious solution to this problem

LLMs + program analysis

53

● There’s a lot of excitement around the idea of combining LLMs +
sound program analyzers (CEGAR-style)

● One hurdle so far is the token limit of LLMs
○ realistically-sized programs don’t fit!

● Program reduction is an obvious solution to this problem
○ but traditional program reduction techniques are slow

LLMs + program analysis

54

● There’s a lot of excitement around the idea of combining LLMs +
sound program analyzers (CEGAR-style)

● One hurdle so far is the token limit of LLMs
○ realistically-sized programs don’t fit!

● Program reduction is an obvious solution to this problem
○ but traditional program reduction techniques are slow
○ for fully-automated systems, static program reduction:

■ allows the verifier to interact honestly with the LLM
■ is faster than dynamic techniques and can operate on

incomplete programs

Example fully-automated system

55

● Consider a system that:
○ chooses a method in an open-source project

Example fully-automated system

56

● Consider a system that:
○ chooses a method in an open-source project

Note that an approximate slicer
means we don’t even need to be
able to build the target project -
it can be anything!

Example fully-automated system

57

● Consider a system that:
○ chooses a method in an open-source project
○ uses static program reduction to shrink that method

Example fully-automated system

58

● Consider a system that:
○ chooses a method in an open-source project
○ uses static program reduction to shrink that method
○ runs a verification tool on the method, making pessimistic

assumptions about the input

Example fully-automated system

59

● Consider a system that:
○ chooses a method in an open-source project
○ uses static program reduction to shrink that method
○ runs a verification tool on the method, making pessimistic

assumptions about the input
○ if there is a warning, calls an LLM and asks it to write a patch

Example fully-automated system

60

● Consider a system that:
○ chooses a method in an open-source project
○ uses static program reduction to shrink that method
○ runs a verification tool on the method, making pessimistic

assumptions about the input
○ if there is a warning, calls an LLM and asks it to write a patch
○ re-runs the verifier on the patch

Example fully-automated system

61

● Consider a system that:
○ chooses a method in an open-source project
○ uses static program reduction to shrink that method
○ runs a verification tool on the method, making pessimistic

assumptions about the input
○ if there is a warning, calls an LLM and asks it to write a patch
○ re-runs the verifier on the patch

■ if it passes, we have fully-automatically produced a
bug-fixing pull request

Example fully-automated system

62

● Consider this bug in Netflix’s spinnaker project:
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce:

https://github.com/spinnaker/spinnaker/issues/6856

Example fully automated system

63

● Consider this bug in Netflix’s spinnaker project:
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce:

import java.util.concurrent.*;
import java.util.concurrent.locks.Lock;
import org.checkerframework.framework.qual.DefaultQualifier; // for CF Nullness
import org.checkerframework.framework.qual.TypeUseLocation;
import org.checkerframework.checker.nullness.qual.Nullable;

@DefaultQualifier(value = Nullable.class, locations = TypeUseLocation.PARAMETER)
class CallableCache<Key, Result> {
 private final ConcurrentHashMap<Key, Future<Result>> cache = null;
 private final Lock lock = null;
 private static final org.slf4j.Logger log
 = org.slf4j.LoggerFactory.getLogger(CallableCache.class);

 void clear(Key key) {
 try {
 lock.lock();
 var future = cache.get(key);
 if (future != null && (future.isDone() || future.isCancelled())) {
 cache.remove(key);
 log.debug("Removing element from cache identified by key: " + key);
 }
 } finally {
 lock.unlock();
 }
 }
}

https://github.com/spinnaker/spinnaker/issues/6856

Example fully-automated system

64

● Consider this bug in Netflix’s spinnaker project:
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce…
● Running a nullability analysis produces:

CallableCache.java:16: error: [argument] incompatible argument for parameter
key of ConcurrentHashMap.get.
 var future = cache.get(key);
 ^
 found : Key extends @Initialized @Nullable Object
 required: @Initialized @NonNull Object

https://github.com/spinnaker/spinnaker/issues/6856

Example fully-automated system

65

● Consider this bug in Netflix’s spinnaker project:
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce…
● Running a nullability analysis produces…
● Prompting an LLM (GPT 3.5) with the code and the warning I’ve

just shown you produces a fix that passes the typechecker:

https://github.com/spinnaker/spinnaker/issues/6856

Example fully-automated system

66

● Consider this bug in Netflix’s spinnaker project:
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce…
● Running a nullability analysis produces…
● Prompting an LLM (GPT 3.5) with the code and the warning I’ve

just shown you produces a fix that passes the typechecker:

void clear(Key key) {
 try {
 lock.lock();
 Key nonNullKey = key;
 if (nonNullKey != null) {
 var future = cache.get(nonNullKey);
 if (future != null && (future.isDone() || future.isCancelled())) {
 cache.remove(nonNullKey);
 log.debug("Removing element from cache identified by key: " + nonNullKey);
 }
 }
 } finally {
 lock.unlock();
 }
}

LLM’s fix

https://github.com/spinnaker/spinnaker/issues/6856

Example fully-automated system

67

● Consider this bug in Netflix’s spinnaker project:
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce…
● Running a nullability analysis produces…
● Prompting an LLM (GPT 3.5) with the code and the warning I’ve

just shown you produces a fix that passes the typechecker…
○ that is very similar to the real human fix that was merged

https://github.com/spinnaker/spinnaker/issues/6856

Example fully-automated system

68

● Consider this bug in Netflix’s spinnaker project:
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce…
● Running a nullability analysis produces…
● Prompting an LLM (GPT 3.5) with the code and the warning I’ve

just shown you produces a fix that passes the typechecker:

 void clear(Key key) {
 if (key == null) {
 return;
 }
 try {
 lock.lock();
 var future = cache.get(key);
 if (future != null && (future.isDone() || future.isCancelled())) {
 cache.remove(key);
 log.debug("Removing element from cache identified by key: " + key);
 }
 } finally {
 lock.unlock();
 }
 }

human fix

https://github.com/spinnaker/spinnaker/issues/6856

Example fully-automated system

69

● Consider this bug in Netflix’s spinnaker project:
https://github.com/spinnaker/spinnaker/issues/6856

● Static program reduction would produce…
● Running a nullability analysis produces…
● Prompting an LLM (GPT 3.5) with the code and the warning I’ve

just shown you produces a fix that passes the typechecker…
○ that is very similar to the real human fix that was merged

■ LLM’s fix locks and then unlocks the lock unnecessarily :(
■ but could have fixed the bug fully automatically, without

any human intervention (except to review the PR)

https://github.com/spinnaker/spinnaker/issues/6856

Summary

70

● static program reduction could be a useful debugging aid for
modular program analyses

Summary

71

● static program reduction could be a useful debugging aid for
modular program analyses
○ specification slicing exploits analysis modularity to accomplish

static program reduction

Summary

72

● static program reduction could be a useful debugging aid for
modular program analyses
○ specification slicing exploits analysis modularity to accomplish

static program reduction
● fast, sound static program reduction unlocks new use cases:

○ LLMs + analysis for fully-automated code improvement
○ code-review-time verification, verifier-guided refactoring, etc.

Summary

73

● static program reduction could be a useful debugging aid for
modular program analyses
○ specification slicing exploits analysis modularity to accomplish

static program reduction
● fast, sound static program reduction unlocks new use cases:

○ LLMs + analysis for fully-automated code improvement
○ code-review-time verification, verifier-guided refactoring, etc.

● prototype specification slicer for Java:
○ https://github.com/kelloggm/specimin

https://github.com/kelloggm/specimin

Summary

74

● static program reduction could be a useful debugging aid for
modular program analyses
○ specification slicing exploits analysis modularity to accomplish

static program reduction
● fast, sound static program reduction unlocks new use cases:

○ LLMs + analysis for fully-automated code improvement
○ code-review-time verification, verifier-guided refactoring, etc.

● prototype specification slicer for Java:
○ https://github.com/kelloggm/specimin

Thanks to all of my collaborators who
have made this work possible: Loi Nguyen,
Tahiatul Islam, Jonathan Phillips, Oscar
Chaparro, Michael Ernst, et al.

https://github.com/kelloggm/specimin

Backup slides

75

Backup slides

76

● Code review time verification
● VGR
● More involved Specimin example in slideware (not finished)

Code-review-time verification

77

Code-review-time verification

78

● Modular analyses typically require users to write specifications
○ e.g., type annotations for a pluggable typechecker

Code-review-time verification

79

● Modular analyses typically require users to write specifications
○ e.g., type annotations for a pluggable typechecker

● This is an obstacle to adoption of such analyses

Code-review-time verification

80

● Modular analyses typically require users to write specifications
○ e.g., type annotations for a pluggable typechecker

● This is an obstacle to adoption of such analyses
○ doesn’t match how developers work with legacy code, which

happens at changeset granularity (i.e., code review)

Code-review-time verification

81

● Modular analyses typically require users to write specifications
○ e.g., type annotations for a pluggable typechecker

● This is an obstacle to adoption of such analyses
○ doesn’t match how developers work with legacy code, which

happens at changeset granularity (i.e., code review)
● Idea: what if we could analyze just a changeset in isolation?

○ and ask developers to write specs just for what has changed

Code-review-time verification

82

● Modular analyses typically require users to write specifications
○ e.g., type annotations for a pluggable typechecker

● This is an obstacle to adoption of such analyses
○ doesn’t match how developers work with legacy code, which

happens at changeset granularity (i.e., code review)
● Idea: what if we could analyze just a changeset in isolation?

○ and ask developers to write specs just for what has changed
○ we can use our static program reducer to do this

Code-review-time verification

83

● Modular analyses typically require users to write specifications
○ e.g., type annotations for a pluggable typechecker

● This is an obstacle to adoption of such analyses
○ doesn’t match how developers work with legacy code, which

happens at changeset granularity (i.e., code review)
● Idea: what if we could analyze just a changeset in isolation?

○ and ask developers to write specs just for what has changed
○ we can use our static program reducer to do this
○ key scientific question: will specs written this way for many

changesets contradict each other or tend to converge?

Verifier-guided refactoring

84

● Motivation: sound program analyses always have false positives

Verifier-guided refactoring

85

● Motivation: sound program analyses always have false positives
● Many semantics-preserving program transformations exist

Verifier-guided refactoring

86

● Motivation: sound program analyses always have false positives
● Many semantics-preserving program transformations exist
● Idea: if an analysis is sound and can verify any variant of a piece

of code created by applying only semantics-preserving
transformations, then the code is definitely safe

Verifier-guided refactoring

87

● Motivation: sound program analyses always have false positives
● Many semantics-preserving program transformations exist
● Idea: if an analysis is sound and can verify any variant of a piece

of code created by applying only semantics-preserving
transformations, then the code is definitely safe
○ requires us to run the verifier in a tight loop on many variants

Verifier-guided refactoring

88

● Motivation: sound program analyses always have false positives
● Many semantics-preserving program transformations exist
● Idea: if an analysis is sound and can verify any variant of a piece

of code created by applying only semantics-preserving
transformations, then the code is definitely safe
○ requires us to run the verifier in a tight loop on many variants

■ too expensive if we’re considering the whole program

Verifier-guided refactoring

89

● Motivation: sound program analyses always have false positives
● Many semantics-preserving program transformations exist
● Idea: if an analysis is sound and can verify any variant of a piece

of code created by applying only semantics-preserving
transformations, then the code is definitely safe
○ requires us to run the verifier in a tight loop on many variants

■ too expensive if we’re considering the whole program
■ our fast, sound static program reducer allows the analysis

to run much faster in such a loop -> makes this practical?

Specification slicing: example

boolean isLiteral = false;
try {
 String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION);
 AbstractType<?> validator = column.cellValueType();
 isLiteral = literalOption == null ?
 (validator instanceof UTF8Type || validator instanceof AsciiType)
 : Boolean.parseBoolean(literalOption);
} catch (Exception e){
 logger.error("failed to parse {} option, defaulting to 'false'.",
 INDEX_IS_LITERAL_OPTION);
}

90

Specification slicing: example

boolean isLiteral = false;
try {
 String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION);
 AbstractType<?> validator = column.cellValueType();
 isLiteral = literalOption == null ?
 (validator instanceof UTF8Type || validator instanceof AsciiType)
 : Boolean.parseBoolean(literalOption);
} catch (Exception e){
 logger.error("failed to parse {} option, defaulting to 'false'.",
 INDEX_IS_LITERAL_OPTION);
}

This is the code from the
example at the beginning
of the talk

91

Specification slicing: example

boolean isLiteral = false;
try {
 String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION);
 AbstractType<?> validator = column.cellValueType();
 isLiteral = literalOption == null ?
 (validator instanceof UTF8Type || validator instanceof AsciiType)
 : Boolean.parseBoolean(literalOption);
} catch (Exception e){
 logger.error("failed to parse {} option, defaulting to 'false'.",
 INDEX_IS_LITERAL_OPTION);
}

preserved (+ its type…)

92

Specification slicing: example

boolean isLiteral = false;
try {
 String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION);
 AbstractType<?> validator = column.cellValueType();
 isLiteral = literalOption == null ?
 (validator instanceof UTF8Type || validator instanceof AsciiType)
 : Boolean.parseBoolean(literalOption);
} catch (Exception e){
 logger.error("failed to parse {} option, defaulting to 'false'.",
 INDEX_IS_LITERAL_OPTION);
}

preserved (+ wherever it is defined…)

93

Specification slicing: example

boolean isLiteral = false;
try {
 String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION);
 AbstractType<?> validator = column.cellValueType();
 isLiteral = literalOption == null ?
 (validator instanceof UTF8Type || validator instanceof AsciiType)
 : Boolean.parseBoolean(literalOption);
} catch (Exception e){
 logger.error("failed to parse {} option, defaulting to 'false'.",
 INDEX_IS_LITERAL_OPTION);
}

preserved (+ its supertypes…)

94

Specification slicing: example

boolean isLiteral = false;
try {
 String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION);
 AbstractType<?> validator = column.cellValueType();
 isLiteral = literalOption == null ?
 (validator instanceof UTF8Type || validator instanceof AsciiType)
 : Boolean.parseBoolean(literalOption);
} catch (Exception e){
 logger.error("failed to parse {} option, defaulting to 'false'.",
 INDEX_IS_LITERAL_OPTION);
}

preserved (+ its supertypes…)

And so on…

95

