Static Program Reduction

via Specification Slicing

Martin Kellogg
New Jersey Institute of Technology

Motivation: analysis debugging

Motivation: analysis debugging

I'm getting many those errors while the project was already compilable with 3.35.

For example, | had to do this to stop this error being reported:
apache/cassandra@ 7b3c4ce #diff-
234d3942bee540163239ada08e27e2aee864d00a3a5f356f570e18684d1bae03R167

It is weird because neither Iterator nor PaxosKeyState has any @MustCall obligations. | get that in
many more places, yet | don't see any pattern.

Another example (which you can reproduce because | haven't fixed that yet: ant cf-only -
Dcf.check.only=org/apache/cassandra/index/sasi/conf/IndexMode. java):

[javacl /home/jlewandowski/dev/cassandra/c18239—static—analysis/src/java/org/apache/l[EJ n
[javac] String literalOption = indexOptions.get(INDEX_IS_LITERAL_OPTION),
[javacl &

[javac] The type of object is: java.lang.String.

[javacl Reason for going out of scope: regular method exit

where indexOptions is a method parameter of type Map<String, String> .

Motivation: analysis debugging

I'm getting many those errors while the project was already compilable with 3.35.

For example, | had to do this to stop this error being reported:

—_ : P

@ kelloggm commented on Jul 5, 2023 Member | °°°

These are caused by the soundness fix in #5912, which closed a (frankly pretty serious) bug related to
how type variables are handled. We expected it to introduce a few false positives, but from your
description it sounds like the impact is more serious than we'd anticipated. I'm sorry about that - | made a
judgment call that the number of false positives would probably be worth fixing the soundness problem,
but it sounds from your description that, at least in your case, that's not how it seemed.

I'll look into the specific examples that you cited (in IndexMode.java and the one you fixed in
PaxosUncommittedTracker.java) and see if | can build small versions that | can use as test cases. If so, |
might be able to improve these to avoid issuing too many of these errors.

®

WIITIT LIIUTAUpMpLLVIID 19 A 1HITUIVU PAIdllITLol VI LyNve rNapsaotlul 111y, QLU Ly~ .

Motivation: analysis debugging

I'm getting many those errors while the project was already compilable with 3.35.

For example, | had to do this to stop this error being reported:

—_ : P

@ kelloggm commented on Jul 5, 2023 Member | °°°

These are caused by the soundness fix in #5912, which closed a (frankly pretty serious) bug related to
how type variables are handled. We expected it to introduce a few false positives, but from your
description it sounds like the impact is more serious than we'd anticipated. I'm sorry about that - | made a
judgment call that the number of false positives would probably be worth fixing the soundness problem,
but it sounds from your description that, at least in your case, that's not how it seemed.

so, |

®

WIITIT LIIUTAUpMpLLVIID 19 A 1HITUIVU PAIdllITLol VI LyNve rNapsaotlul 111y, QLU Ly~ .

Motivation: analysis debugging

e Typical scenario:
o vyou are the developer of some useful static analysis

Motivation: analysis debugging

e Typical scenario:
o vyou are the developer of some useful static analysis
o auser encounters a problem with your analysis (e.g., a crash,
wrong output, etc.)

Motivation: analysis debugging

e Typical scenario:
o vyou are the developer of some useful static analysis
o auser encounters a problem with your analysis (e.g., a crash,
wrong output, etc.)
o theuser helpfully reports the bug
m but usually without a small, reproducible test case

Traditional solution: program reduction

e Underlying algorithm: delta debugging
o uses divide-and-conquer to find a minimal “interesting”
subset of a given target set
o relies onthe presence of a runnable oracle for “interesting”

Traditional solution: program reduction

e Underlying algorithm: delta debugging
o uses divide-and-conquer to find a minimal “interesting”
subset of a given target set
o relies onthe presence of a for “interesting”
e Program reduction today:
o ‘“interesting” = “does running the analysis on the program
cause the bug we're interested in”
o C-Reduce, Perses (ICSE 2018) work this way

10

Traditional solution: program reduction

e Delta-debugging based program reduction is a
o thatis, it requires us to run the analysis that we are
debugging repeatedly

11

Traditional solution: program reduction

e Delta-debugging based program reduction is a
o thatis, it requires us to run the analysis that we are
debugging repeatedly
m works fine for fast, easy-to-deploy analyses (e.g.,a C
compiler)

12

Traditional solution: program reduction

e Delta-debugging based program reduction is a
o thatis, it requires us to run the analysis that we are
debugging repeatedly
m works fine for fast, easy-to-deploy analyses (e.g.,a C
compiler)
o what about heavier-weight analyses (e.g., program verifiers)?
m e.g., the analysis in the example at the beginning is a “fast”
resource leak verifier, but it still runs in tens of minutes
on realistically-sized Java programs

13

Traditional solution: program reduction

e Delta-debugging based program reduction is a
o thatis, it requires us to run the analysis that we are

debugging repeatedly

m works fine for fast, easy[

compiler)

o what about heavier-weigh
m e.g,theanalysisinthe

resource leak verifier, but it still runs in tens of minutes

Result: in practice, analysis
developers don’t use program
reduction (it’s too slow)

on realistically-sized Java programs

~

Static program reduction

e For any given dynamic analysis, there is usually a static analysis
that could achieve the same goal (and vice-versa)
o but usually with different tradeoffs

15

Static program reduction

e For any given dynamic analysis, there is usually a static analysis
that could achieve the same goal (and vice-versa)
o but usually with different tradeoffs
m astatic program reduction technique wouldn’t have to
scale with the cost of running the underlying analysis

16

Static program reduction

e For any given dynamic analysis, there is usually a static analysis
that could achieve the same goal (and vice-versa)
o but usually with different tradeoffs
m astatic program reduction technique wouldn’t have to
scale with the cost of running the underlying analysis
e What are the barriers to static program reduction?
o if we can’t run the analysis whose output we're trying to
preserve, how do what know what parts of the program can
be removed?

17

Key insight: modularity

18

Key insight: modularity

e most analyses we're interested in are modular
o thatis, for performance reason they don’t perform arbitrary
interprocedural analysis

19

Key insight: modularity

e most analyses we're interested in are modular
o thatis, for performance reason they don’t perform arbitrary
interprocedural analysis
e if we can formalize modularity, we can use that definition to
build a static program reducer:
o intuitively, modularity tells us what other program elements
can be considered when analyzing a target program element

20

Specification slicing

Key theorem: a specification slicer preserves the compile-time
behavior of a target program P (with respect to a modular program
analysis V) at some target program location L

21

Specification slicing

Key theorem: a specification slicer preserves the compile-time
behavior of a target program P (with respect to a modular program
analysis V) at some target program location L

cf. “traditional” slicing: a “traditional” slicer preserves the run-time
behavior of a target program P (with respect to concrete execution)
at some target program location L

22

Specification slicing

Key theorem: a specification slicer preserves the compile-time

behavior of a target program P (with respect to a modular program

analysis V) at some target program location L

cf. “traditional” slicing: a “traditional” slicer preserves the run-time

behavior of a target program P (with respect to concrete execution)

at some target program location L

-
You can think of this as

“abstract” slicing, in the sense
of “abstract interpretation”

g

~

J

23

Specification slicing: algorithm

24

Specification slicing: algorithm

Input: program P, location L in P, and definition of modularity M

25

Specification slicing: algorithm

Input: program P, location L in P, and definition of modularity M
e Misasyntax-directed map from kinds of program elements to
related program elements that the analysis of interest considers

26

Specification slicing: algorithm

Input: program P, location L in P, and definition of modularity M
e Misasyntax-directed map from kinds of program elements to
related program elements that the analysis of interest considers
o e.g., M(“field read expression”) might be “field’s declaration,
type of field, receiver expression”

27

Specification slicing: algorithm

Input: program P, location L in P, and definition of modularity M
e Misasyntax-directed map from kinds of program elements to
related program elements that the analysis of interest considers
o e.g., M(“field read expression”) might be “field’s declaration,
type of field, receiver expression”
o M can be reused between similar analyses
m e.g,javac, Checker Framework, OpenJML all have
approximately the same M for Java

28

Specification slicing: algorithm
Input: program P, location L in P, and definition of modularity M

Algorithm:

29

Specification slicing: algorithm
Input: program P, location L in P, and definition of modularity M

Algorithm:
worklist = all elements e 1n L's scope
slice = 9
while (worklist 1s not empty):
toPreserve = worklist.pop ()
if (!slice.contains (toPreserve)) :
slice.add (toPreserve)
worklist.add (M(toPreserve))

return slice

30

Specification slicing: examples

e remove bodies of used methods
e primitive field reads
e amore complex example with unsolved symbols

31

Specification slicing: unsolvable symbols

e Sofar, we have assumed that all symbols are solvable
o thatis, we're assuming that we have the whole program

32

Specification slicing: unsolvable symbols

e Sofar, we have assumed that all symbols are solvable
o thatis, we're assuming that we have the whole program
e Inpractice, we often can’t easily access the whole program
o e.g. itwould require human effort to go collect the classpath
of the target program in the example
m need torun the build tool, etc.

33

Specification slicing: unsolvable symbols

e Sofar, we have assumed that all symbols are solvable
o thatis, we're assuming that we have the whole program
e Inpractice, we often can’t easily access the whole program
o e.g. itwould require human effort to go collect the classpath
of the target program in the example
m need torun the build tool, etc.
o thisis animpediment to using a specification slicer in a
fully-automated system

34

Specification slicing: unsolvable symbols

e An advantage of static program reduction is that we can
minimize incomplete programs

35

Specification slicing: unsolvable symbols

e An advantage of static program reduction is that we can
minimize incomplete programs
o however, minimizing an incomplete program may introduce
ambiguity into the modularity model

36

Specification slicing: unsolvable symbols

e An advantage of static program reduction is that we can

minimize incomplete programs
o however, minimizing an incomplete program may introduce

ambiguity into the modularity model
o for example, suppose the program reads a field that’s not
defined. More than one option for where to put that field:
m theimmediate superclass
m thesuperclass’ superclass
m etc. .

Specification slicing: exact vs approximate

e Our practical specification slicer has two modes:

38

Specification slicing: exact vs approximate

e Our practical specification slicer has two modes:
o exact mode: access to the whole program is assumed, and the
slicer relies on that to find the definitions of program elements
m this mode works just like the algorithm a few slides ago

39

Specification slicing: exact vs approximate

e Our practical specification slicer has two modes:

o exact mode: access to the whole program is assumed, and the
slicer relies on that to find the definitions of program elements
m this mode works just like the algorithm a few slides ago

o : when the slicer finds a symbol it can’t solve,
it generates a program element that makes sense in context
m uses heuristics to deal with ambiguity
m but not guaranteed to preserve analysis behavior (even if

modularity model is correct) if there is ambiguity

40

Specification slicing: project status

e Wehavea for modular analyses of Java:
o https://github.com/kelloggm/specimin
e Currently dealing with:

41

https://github.com/kelloggm/specimin

Specification slicing: project status

e Wehavea for modular analyses of Java:
o https://github.com/kelloggm/specimin
e Currently dealing with:
o along tail of engineering effort to get the approximate mode
heuristics right

42

https://github.com/kelloggm/specimin

Specification slicing: project status

e Wehavea for modular analyses of Java:
o https://github.com/kelloggm/specimin
e Currently dealing with:
o along tail of engineering effort to get the approximate mode
heuristics right
o getting the modularity model formalization exactly right
e Butwe are getting closer to both

43

https://github.com/kelloggm/specimin

Static program reduction: usefulness

e /Zooming out, why study program reduction?

44

Static program reduction: usefulness

e /Zooming out, why study program reduction?
o it's auseful for analyses on its own, but...

45

Static program reduction: usefulness

e /Zooming out, why study program reduction?
o it's auseful for analyses on its own, but...
e Afast program reduction technique that is guaranteed to
preserve analysis behavior unlocks interesting use cases!

46

Static program reduction: usefulness

e /Zooming out, why study program reduction?
o it's auseful for analyses on its own, but...
e Afast program reduction technique that is guaranteed to
preserve analysis behavior unlocks interesting use cases!

o staying when combining an LLM + a
modular analysis

o analyzing only a changeset instead of the whole program
o running an analysis in a tight loop

47

Static program reduction: usefulness

e /Zooming out, why study program reduction?
o it's auseful for analyses on its own, but...
e Afast program reduction technique that is guaranteed to
preserve analysis behavior unlocks interesting use cases!
o staying when combining an LLM + a
I’ll talk about these if you ask
o analyzing only a changeset instead of the whole program
[o running an analysis in a tight loop]

48

Static program reduction: usefulness

e /Zooming out, why study program reduction?
o it's auseful for analyses on its own, but...

e Afas ' ' ' anteed to
pres definitely going to talk about this se cases!

o staying when combining an LLM + a
[modular analysis]
o analyzing only a changeset instead of the whole program
o running an analysis in a tight loop

49

LLMs + program analysis

e There’s alot of excitement around the idea of combining LLMs +
sound program analyzers (CEGAR-style)

50

LLMs + program analysis

e There’s alot of excitement around the idea of combining LLMs +
sound program analyzers (CEGAR-style)

e One hurdle so faris the token limit of LLMs
o realistically-sized programs don't fit!

51

LLMs + program analysis

e There’s alot of excitement around the idea of combining LLMs +
sound program analyzers (CEGAR-style)

e One hurdle so faris the token limit of LLMs
o realistically-sized programs don't fit!

e Program reduction is an obvious solution to this problem

52

LLMs + program analysis

e There's alot of excitement around the idea of combining LLMs +
sound program analyzers (CEGAR-style)

e One hurdle so faris the token limit of LLMs
o realistically-sized programs don't fit!

e Program reduction is an obvious solution to this problem
o but traditional program reduction techniques are slow

53

LLMs + program analysis

e There's alot of excitement around the idea of combining LLMs +
sound program analyzers (CEGAR-style)
e One hurdle so faris the token limit of LLMs
o realistically-sized programs don't fit!
e Program reduction is an obvious solution to this problem
o but traditional program reduction techniques are slow
o for fully-automated systems, static program reduction:
m allows the verifier to interact with the LLM

m isfaster than dynamic techniques and can operate on
incomplete programs 54

Example fully-automated system

e Consider asystem that:
o chooses a method in an open-source project

55

Example fully-automated system

e Consider asystem that:
o chooses a method in an open-source project

-

Note that an approximate slicer
means we don’t even need to be
able to build the target project -

Qt can be anything!

~

J

56

Example fully-automated system

e Consider asystem that:
o chooses a method in an open-source project
o uses static program reduction to shrink that method

57

Example fully-automated system

e Consider asystem that:
o chooses a method in an open-source project
o uses static program reduction to shrink that method
o runs a verification tool on the method, making pessimistic
assumptions about the input

58

Example fully-automated system

e Consider asystem that:

O

O

O

chooses a method in an open-source project

uses static program reduction to shrink that method

runs a verification tool on the method, making pessimistic
assumptions about the input

if there is awarning, calls an LLM and asks it to write a patch

59

Example fully-automated system

e Consider asystem that:

O

O

O

chooses a method in an open-source project

uses static program reduction to shrink that method

runs a verification tool on the method, making pessimistic

assumptions about the input

if there is awarning, calls an LLM and asks it to write a patch
on the patch

60

Example fully-automated system

e Consider asystem that:

O

O

O

chooses a method in an open-source project

uses static program reduction to shrink that method

runs a verification tool on the method, making pessimistic

assumptions about the input

if there is awarning, calls an LLM and asks it to write a patch

on the patch

m ifit passes, we have fully-automatically produced a

bug-fixing pull request

61

Example fully-automated system

e Consider this bug in Netflix’s spinnaker project:
https://github.com/spinnaker/spinnaker/issues/6856

e Static program reduction would produce:

62

https://github.com/spinnaker/spinnaker/issues/6856

EX:

] r——

import java.util.concurrent.*;

import java.util.concurrent.locks.Lock;

import org.checkerframework.framework.qual.DefaultQualifier; // for CF Nullness
import org.checkerframework.framework.qual.TypeUseLocation;

import org.checkerframework.checker.nullness.qual.Nullable;

@DefaultQualifier (value = Nullable.class, locations = TypeUselLocation.PARAMETER)
class CallableCache<Key, Result> {

private final ConcurrentHashMap<Key, Future<Result>> cache = null;
private final Lock lock = null;
private static final org.slf4j.Logger log

= org.slf4dj.lLoggerFactory.getLogger (CallableCache.class);

void clear (Key key) {

try {
lock.lock () ;
var future = cache.get (key);
if (future !'= null && (future.isDone() || future.isCancelled())) {

cache.remove (key) ;
log.debug ("Removing element from cache identified by key: " + key);
}
} finally {
lock.unlock () ;

63

https://github.com/spinnaker/spinnaker/issues/6856

Example fully-automated system

e Consider this bug in Netflix’s spinnaker project:
https://github.com/spinnaker/spinnaker/issues/6856

e Static program reduction would produce...

e Running a nullability analysis produces:

CallableCache.java:16: error: [argument] incompatible argument for parameter
key of ConcurrentHashMap.get.

var future = cache.get (key);
found : Key extends @Initialized @Nullable Object
required: @Initialized @NonNull Object

64

https://github.com/spinnaker/spinnaker/issues/6856

Example fully-automated system

e Consider this bug in Netflix’s spinnaker project:
https://github.com/spinnaker/spinnaker/issues/6856

e Static program reduction would produce...

e Running a nullability analysis produces...

e Prompting an LLM (GPT 3.5) with the code and the warning I've
just shown you produces a fix that passes the typechecker:

65

https://github.com/spinnaker/spinnaker/issues/6856

Example fully-automated system

etflix’'s spinnaker project:
innaker/spinnaker/issues/6856

LLM’s fix

void clear (Key key) {

try {
® lock.lock () ;
Key nonNullKey = key;
o if (nonNullKey '= null) {
var future = cache.get (nonNullKey) ;
j if (future !'= null && (future.isDone () || future.isCancelled())) {
cache.remove (nonNullKey) ;
log.debug ("Removing element from cache identified by key: " + nonNullKey) ;
}
}
} finally {

lock.unlock () ;
}

\

66

https://github.com/spinnaker/spinnaker/issues/6856

Example fully-automated system

Consider this bug in Netflix’s spinnaker project:
https://github.com/spinnaker/spinnaker/issues/6856

Static program reduction would produce...

Running a nullability analysis produces...

Prompting an LLM (GPT 3.5) with the code and the warning I've
just shown you produces a fix that passes the typechecker...

o thatisvery similar to the real human fix that was merged

67

https://github.com/spinnaker/spinnaker/issues/6856

Example fully-automated system

e Consider this bug in Netflix’s spinnak
https://github.com/s

void clear (Key key) {

innaker/s human fix

if (key == null) {
return;

}

try {
lock.lock () ;
var future = cache.get (key);
if (future !'= null && (future.isDone() || future.isCancelled())) {

cache.remove (key) ;
log.debug ("Removing element from cache identified by key: " + key);
}
} finally {
lock.unlock () ;

68

https://github.com/spinnaker/spinnaker/issues/6856

Example fully-automated system

Consider this bug in Netflix’s spinnaker project:

https://github.com/spinnaker/spinnaker/issues/6856

Static program reduction would produce...

Running a nullability analysis produces...

Prompting an LLM (GPT 3.5) with the code and the warning I've

just shown you produces a fix that passes the typechecker...

o thatisvery similar to the real human fix that was merged
m LLM’s fix locks and then unlocks the lock unnecessarily :(
m but could have fixed the bug fully automatically, without

any human intervention (except to review the PR)

https://github.com/spinnaker/spinnaker/issues/6856

Summary

e static program reduction could be a useful debugging aid for
modular program analyses

70

Summary

e static program reduction could be a useful debugging aid for
modular program analyses
o specification slicing exploits analysis modularity to accomplish
static program reduction

71

Summary

e static program reduction could be a useful debugging aid for
modular program analyses
o specification slicing exploits analysis modularity to accomplish
static program reduction
e fast, sound static program reduction unlocks new use cases:
o LLMs + analysis for fully-automated code improvement
o code-review-time verification, verifier-guided refactoring, etc.

72

Summary

e static program reduction could be a useful debugging aid for
modular program analyses
o specification slicing exploits analysis modularity to accomplish
static program reduction
e fast, sound static program reduction unlocks new use cases:
o LLMs + analysis for fully-automated code improvement
o code-review-time verification, verifier-guided refactoring, etc.
° specification slicer for Java:
o https://github.com/kelloggm/specimin

73

https://github.com/kelloggm/specimin

(Thanks to all of my collaborators who R
have made this work possible: Loi Nguyen,

Summary Tahiatul Islam, Jonathan Phillips, Oscar
kChaparro, Michael Ernst, et al. Yy

e static program reduction could be a useful debugging aid for
modular program analyses
o specification slicing exploits analysis modularity to accomplish
static program reduction
e fast, sound static program reduction unlocks new use cases:
o LLMs + analysis for fully-automated code improvement
o code-review-time verification, verifier-guided refactoring, etc.
° specification slicer for Java:
o https://github.com/kelloggm/specimin

74

https://github.com/kelloggm/specimin

Backup slides

75

Backup slides

e Codereview time verification
e VGR
e Moreinvolved Specimin example in slideware (not finished)

76

Code-review-time verification

77

Code-review-time verification

e Modular analyses typically require users to write specifications
o e.g., type annotations for a pluggable typechecker

78

Code-review-time verification

e Modular analyses typically require users to write specifications
o e.g., type annotations for a pluggable typechecker
e Thisisanobstacle to adoption of such analyses

79

Code-review-time verification

e Modular analyses typically require users to write specifications
o e.g., type annotations for a pluggable typechecker
e Thisisanobstacle to adoption of such analyses
o doesn’t match how developers work with legacy code, which
happens at changeset granularity (i.e., code review)

80

Code-review-time verification

e Modular analyses typically require users to write specifications
o e.g., type annotations for a pluggable typechecker
e Thisisanobstacle to adoption of such analyses
o doesn’t match how developers work with legacy code, which
happens at changeset granularity (i.e., code review)
e Idea: what if we could in isolation?
o and ask developers to write specs just for what has changed

81

Code-review-time verification

e Modular analyses typically require users to write specifications
o e.g., type annotations for a pluggable typechecker

e Thisisanobstacle to adoption of such analyses
o doesn’t match how developers work with legacy code, which

happens at changeset granularity (i.e., code review)

e Idea: what if we could in isolation?
o and ask developers to write specs just for what has changed
O wecan todo this

82

Code-review-time verification

e Modular analyses typically require users to write specifications
o e.g., type annotations for a pluggable typechecker
e Thisisanobstacle to adoption of such analyses
o doesn’t match how developers work with legacy code, which
happens at changeset granularity (i.e., code review)

e Idea: what if we could in isolation?
o and ask developers to write specs just for what has changed
O wecan todo this

o key scientific question: will specs written this way for many
changesets contradict each other or tend to converge?

83

Verifier-guided refactoring

e Motivation: sound program analyses always have false positives

84

Verifier-guided refactoring

e Motivation: sound program analyses always have false positives
e Many semantics-preserving program transformations exist

85

Verifier-guided refactoring

e Motivation: sound program analyses always have false positives

e Many semantics-preserving program transformations exist

e Idea:if an analysisis sound and can of a piece
of code created by applying only semantics-preserving
transformations, then the code is definitely safe

86

Verifier-guided refactoring

e Motivation: sound program analyses always have false positives
e Many semantics-preserving program transformations exist
e Idea:if an analysisis sound and can of a piece
of code created by applying only semantics-preserving
transformations, then the code is definitely safe
o requires ustoruntheverifierina on many variants

87

Verifier-guided refactoring

e Motivation: sound program analyses always have false positives
e Many semantics-preserving program transformations exist
e Idea:if an analysisis sound and can of a piece
of code created by applying only semantics-preserving
transformations, then the code is definitely safe
o requires ustoruntheverifierina on many variants
m tooexpensive if we're considering the whole program

88

Verifier-guided refactoring

e Motivation: sound program analyses always have false positives
e Many semantics-preserving program transformations exist
e Idea:if an analysisis sound and can of a piece
of code created by applying only semantics-preserving
transformations, then the code is definitely safe
o requires ustoruntheverifierina on many variants
m tooexpensive if we're considering the whole program
m our fast, sound static program reducer allows the analysis
to run much faster in such a loop -> makes this practical?

Specification slicing: example

boolean isliteral = false;
try {
String literalOption = indexOptions.get INDEX IS LITERAL OPTION) ;
AbstractType<?> validator = column.cellValueType()
isLiteral = literalOption ==null ?
(validator instanceof UTF8Type || validator instanceof AsciiType)
: Boolean.parseBoolean(literalOption);
} catch (Exception e) {

logger.error ("failed to parse {} option, defaulting to 'false'."
INDEX IS LITERAL OPTION) ;

4

90

-

Specification slicing: examp| This is the code from the

boolean islLiteral =
try {

example at the beginning

of the talk
_

~

J

String literalOption = indexOptions.get INDEX IS LITERAL OPTION) ;
AbstractType<?> validator = column.cellValueType()

isLiteral = literalOption == ?

(validator instanceof UTF8Type || validator instanceof AsciiType)

: Boolean.parseBoolean(literalOption);

} catch (Exception e) {
logger.error (
INDEX IS LITERAL OPTION) ;

91

Specification slicing: example

boolean isliteral = false;
try {
String literalOption =| indexOptions.get CINDEX IS LITERAL OPTION) ;
AbstractType<?> validator = column.cellValueType()
isLiteral = literalOption ==null ?
(validator instanceof UTF8Type || validator instanceof AsciiType)
: Boolean.parseBoolean(literalOption);
} catch (Exception e) {

logger.error ("failed to parse {} option, defaulting to 'false'."
INDEX IS LITERAL OPTION) ;

preserved (+ its type...)

4

92

Specification slicing: example

boolean isLiteral = false; preserved (+ wherever it is defined...)
try {

String literalOption = indexOptions.get {NDEX IS LITERAL OPTION)
AbstractType<?> validator = column.cellValueType ()
isLiteral = literalOption ==null ?
(validator instanceof UTF8Type || validator instanceof AsciiType)
: Boolean.parseBoolean(literalOption);
} catch (Exception e) {

logger.error ("failed to parse {} option, defaulting to 'false'."
INDEX IS LITERAL OPTION) ;

4

93

Specification slicing: example

boolean isliteral = false;

try { preserved (+ its supertypes...)
String literalOption = indexOptions.get INDEX IS LITERAL OPTION) ;
lAbstractType}?> validator = column.cellValueType()
isLiteral = literalOption ==null ?
(validator instanceof UTF8Type || validator instanceof AsciiType)

: Boolean.parseBoolean(literalOption);
} catch (Exception e) {

logger.error ("failed to parse {} option, defaulting to 'false'."
INDEX IS LITERAL OPTION) ;

4

94

Specification slicing: example

boolean isliteral = false;

try 1 preserved (+]
String literalOptio bet INDEX IS LITERAL OPTION) ;
lAbstractType}?> vali And soon... c11ValueType () ;
1isLiteral = literalOs -
(validator instanceof UTF8Type || validator instanceof AsciiType)
: Boolean.parseBoolean(literalOption);
} catch (Exception e) {

logger.error ("failed to parse {} option, defaulting to 'false'."
INDEX IS LITERAL OPTION) ;

4

95

