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Partial evaluation vs. program 
constructionconstruction

• Partial evaluation
– Generate program by staging normal program
– Erasure property

N   – No open terms

• Program construction
B ild program from fragments– Build program from fragments

– Allow open terms
– No erasure propertyNo erasure property

• This work takes a program construction approach to 
program generation.p g g
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Library specialization
• Problem:  Libraries too general – users pay for 

features they don’t use.y
• How can one provide a set of  classes representing all 

subsets of  a library class’s features?
• Problem was described by Peter Sestoft in WG2.11 

meeting in Portland in 2006, in context of  C5 
ll i  libcollection library.

• A comparison of  methods, including program 
generation  is given in Aktemur  Kamin  “Writing generation, is given in Aktemur, Kamin, “Writing 
Customizable Libraries - A comparative study ,” Symp. 
on Applied Computing, 2009.on Applied Computing, 2009.
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class LinkedList implements List { 
    Node first,last; // a doubly linked list 
    int size; 

   void reverse() { 

       Node a = first.next, b = last.prev; 
       for(int i=0; i<size/2; i++) { 
           Object swap = a.item; 
           a.item = b.item; b.item = swap; 
           a = a.next; b = b.prev; 
       } 
   } 

} 

    int counter = 0; 

       counter++; 

Adapted from C5  
 [Kokholm and Sestoft] 

   void add(Object item) { 

       Node a = new Node(item); 
       … 
   } 

       counter++; 



   void reverse() { 

       Node a = first.next, b = last.prev; 
       for(int i=0; i<size/2; i++) { 
           Object swap = a.item; 
           a.item = b.item; b.item = swap; 
           a = a.next; b = b.prev; 
       } 
   } 
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Code genLL(Code field, Code inc) { 
    return  

      `(field) 

        `(inc) 

                        ; 
} 

class LinkedList implements List { 
    Node first,last; // a doubly linked list 
    int size; 

} 

   void add(Object item) { 

       Node a = new Node(item); 
       … 
   } 

        `(inc) 

genLL( int counter = 0; , 
               counter++;  ) 

genLL(  ,    ) 

genLL(  ,  counter++;  ) 

✓ 

✓ 

✗ 

More details in 
 [Aktemur and Kamin SAC09] 



– Fragment type (Γ  β) 
•  “The fragment has type β if  evaluated in the 

environment Γ.” 
– Need declaration type 
•  “The declaration yields in environment Γ2 if  

evaluated in environment Γ1.  

April 10th, 2009 Improving Efficiency and Safety of  Program Generation 16 

 
λopen
poly

   ◊(Γ1 Γ2 )

genLL  cnt = ref 0     cnt := !cnt + 1  
genLL       0  

let genLL cf  ci =  let `(cf) in (λz. `(ci) …z)  

   ◊(ρ1 ρ2 )→ ({z :β}ρ2 α)→ (ρ1  (β→β))

  :  (ρ1  (β→β))

[Kim-Yi-Calcagno POPL06] 
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genLL  cnt = ref 0     cnt := !cnt + 1  
genLL       0  

let genLL cf ci =  let `(cf) in (λz. `(ci) …z), (λw.`(ci)…w) 

   ◊(ρ1  {z :β,w :δ}ρ2 )→ ({z :β,w :δ}ρ2 α)→ (ρ1  (β→β) * (δ→δ))

   :  ({z :β,w :δ}ρ1  (β→β) * (δ→δ))

unnecessary requirement on the incoming environment 
makes the fragment unrunnable.  
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genLL  cnt = ref 0     cnt := !cnt + 1  
genLL       0  

let genLL cf ci =  let `(cf) in (λz. `(ci) …z), (λw.`(ci)…w) 

   

◊(ρ1 ρ2 )→ (ρ2 α)→ (ρ1  (β→β) * (δ→δ))
where  {z :β}ρ2 <:ρ2  and {w :δ}ρ2 <:ρ2

  (ρ1  (β→β) * (δ→δ))

compare to    ({z :β,w :δ}ρ1  (β→β) * (δ→δ))

Subtyping can solve the problem. 



Type-checking Program Generators 

•         cannot completely satisfy the library 
specialization problem. 

•  Two requirements 
– Pluggable declarations 

– Subtyping 
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λopen
poly

will come back to these 
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Code Fragments vs. Record Calculus 

 2+3  
 x+3  

 `(c)+3  
 λx.x+3  

run  2+3  

λr. 2+3 
λr. rix+3 

λr. c(r)+3 

λr. λy. let r = r with {x=y}    
             in rix+3 

(λr. 2+3) { } 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Transformation 
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c


n
= c

x


n
= rn∙x

λx.e




n
= λy.let rn = rn  with {x = y}  in e



n

e1e2





n
= e1




n

e2




n

let x = e1  in e2





n
= let rn = rn  with {x = e1





n
}  in e2




n

e



n
= λrn+1. e



n+1

`(e)



n+1

= e


n
rn+1

run(e)




n
= e


n
{ }

stage = number of  surrounding quotations 



Examples

0 0c. let x=5 in `(c) c.let r =r  with {c=c}inλ λ=

1 1

0 1

                                          ( r.let r =r  with {x=5}
                                                in r .c(r ))

λ
( ))

0 0
0y. y `(y) y.let r =r  with {y=y} inλ λ+ =

1 1 0 1                                   ( r . r .y + (r .y)(r ))λ
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Equivalence of  Staged vs. Record 
Semantics 

•  Can we use a record type system to type-check 
a staged expression? 
– “Expression e is type-safe iff          is type-safe.” 
– Soundness? (i.e. Preservation and Progress) 
– Preservation property comes for free. 
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e1
n⎯→⎯ e2

    

            ⇓

e1




n

β
⎯→⎯ *  e2





n

τ


τ


τ


τ

A major 
theorem 

   e




n

Staged calculus 

Record calculus 



Soundness of  the Type System 

•  Progress: “If  e1 is typable, it is either a value or 
there exists e2 such that                  .”   

•  Has to be proven explicitly.  

•  Need to put restrictions on record type system 
– λx. 42  x => λx.(λr. 42)x 
– Distinguish record variables from other variables 
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e1
n⎯→⎯ e2

Γ ∈RecordType
A∈ LegType ::= α ⏐ ι ⏐ T → A
T ∈Type ::= A ⏐ Γ

record 
variables 

other 
variables 



Record Type System 

•  Record type system is sound with respect to 
program generation semantics. 

•  We can use the type inference algorithm to 
infer a type. 

•  So, how powerful is it? 
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 Δ0...Δn S e : A⇔ Δ0...ΔnR e
n :A

[Kim-Yi-Calcagno POPL06] Record type system 



Type-checking Program Generators 

•  Translation converts program generators to 
record calculus expressions. 

•  Record calculus provides a sound and powerful 
type system to type-check program generators. 

•  How about the two requirements motivated by 
the library specialization problem? 
– Subtyping 

– Pluggable declarations 
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Subtyping 

•  Record subtyping 
– Pottier defines a constraint system combining 

subtyping and records 
– Can instantiate Odersky, Sulzmann, Wehr’s HM(X) 
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G = λc.  let x=1 in `(c) , let y=1 in `(c)  

   ({x : int,y : int}ρα)→ ({x : int,y : int}ρ (α *α))

G  0                  let x=1 in 0 , let y=1 in 0  

   ({x : int,y : int}ρ (int* int))Not Runnable 

   

({x :θ1 ,y :θ2 }ρα)→ ({x :θ1 ,y :θ2 }ρ (α *α))
where  int <:θ1  and int <:θ2

Absence or concrete type 

   

({x : Abs,y : Abs}ρ (int* int))
because  int <: Abs and  int <: Abs

Runnable 



Subtyping 

•  Record type system with subtyping  
– still sound w.r.t. program generation semantics 

– subsumes plain record type system 

•  Translation preserves contra/co-variance 
properties 
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Γ2 <:Γ1         A1 <: A2

(Γ1  A1) <: (Γ2  A2 )   

Γ2 <:Γ1         A1 <: A2

Γ1 → A1 <: Γ2 → A2



Outline

• Motivation – The library specialization 
problem and the need for subtypingproblem and the need for subtyping

• Translating staged ML to record calculus

• Typing staged ML via record calculus

• Subtyping

• “Pluggable declarations”

• Handling side effects• Handling side effects

• Related work

25April 15th, 2009 Typing staged languages with record calculus



Pluggable Declarations 

•  Extend the         syntax, semantics and the type 
system 

•  Soundness is preserved, proof  provided in the 
thesis 

April 10th, 2009 Improving Efficiency and Safety of  Program Generation 30 

let genLL cf ci =   let `(cf) in  (λz. `(ci) …z)  

genLL  cnt = ref 0     cnt := !cnt + 1  
genLL         

 
λopen
poly



Pluggable Declarations 

•  Pluggable declarations are syntactic sugar.♮ 

•  Define a desugaring function δ: 
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 x = e            => λc. let x = e in `(c)  
let `(e1) in e2 => `(e1 e2) 

   

e1
n⎯→⎯ e2  ⇒ δ(e1)

n⎯→⎯ * δ(e2 )

Δ0...Δn  e : A ⇒ δ(Δ0)...δ(Δn) δ(e) :δ(A) 

♮ Thanks to Prof. Chung-chieh Shan 



Translating Pluggable Declarations 

•  Translation of  pluggable declarations to record 
calculus 
– Need to be careful about “legitimate” types to 

preserve soundness 
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Handling side effects

• In current translation, terms at level zero go 
inside abstractions: <  `(e)  >  => λr    e’ inside abstractions: < … (e)… >  => λr. … e  ….
This changes order of  evaluation.

A  li t d t l ti  i  d fi d  • A more complicated translation is defined, 
such that <…`(e)… >   => (λπ.λr. … π …) e’

• Order of  evaluation preserved 

• Properties proven for side-effect free language 
above can be proven here.
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Related Work 
•  [Kameyama-Kiselyov-Shan PEPM08] 
– Not multi-stage 
– Driven by type annotations 
• Higher-rank polymorphism 

– No type inference 
– Conjecture stated for operational semantics relation 

•  [Chen-Xi ICFP03] 
– Translation to first-order abstract syntax 
• Can convert back to staged language 

–   Program variables converted to de Bruijn indices 
•  Bindings vanishing or occurring “unexpectedly” 
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Related Work 

•  [Kim-Yi-Calcagno POPL06] 
– Starting point for our work (added recursion) 

•  [Nanevski 02] 
– Free variables of  a fragment become part of  its type 

– The list of  free variables in a type can be loosened 

• Subtyping 

• Not sufficient for library specialization because 
no type information is kept – only names 
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Contributions

• Record calculus provides a sound and powerful 
type system for program generationtype system for program generation

• Existing knowledge in the record calculus 
h i   f lresearch is very useful

– E.g. subtyping

• Type system is extensible with pluggable 
declarations and side-effecting expressions

• Library specialization problem

(See loome.cs.uiuc.edu pubs page for details…) (See loome.cs.uiuc.edu pubs page for details…) 
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Future Work

• Staged typing
A staged type system with subtyping that does not – A staged type system with subtyping that does not 
depend on record calculus

Extending the type system to a procedural/object– Extending the type system to a procedural/object-
oriented language

• Side-effecting expressions are already handledSide effecting expressions are already handled

• Inheritance may pose difficulty
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Extra Slides 

April 10th, 2009 Improving Efficiency and Safety of  Program Generation 40 



Translating Pluggable Declarations 

•  First attempt 
–   5  `( x = 2 ) => (λr2.5) ((λr2.r2 with {x=2})r1) 

•  Second attempt 
–   x = 1   5  passes the type checker. 

•  Solution:  
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〈x = e〉n = λrn.rn  with {x = en+1}

type-correct type-incorrect 

   〈x = e〉n = λc.〈let x = e in `(c)〉n

   

〈x = e〉n = λκ.λc.〈let x = e in `(c)〉n

let `(e1) in e2
n = `(e1  κ  〈e2 〉)

n



Cannot Type 

•  Because of  rank-1 polymorphism, cannot type 

•  Polymorphic types are not preserved after 
antiquotation/quotation  
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〈let y = λx.x in `(〈y 1, y 'a'〉)〉

  λy.(y 1, y 'a')




