
Typing program generators
using the record calculus

Sam Kamin
Tankut BarışAktemurTankut BarışAktemur

WG 2 11WG 2.11
April 15th, 2009

Outline

• Motivation – The library specialization
problem and the need for subtypingproblem and the need for subtyping

• Translating staged ML to record calculus

• Typing staged ML via record calculus

• Subtyping

• “Pluggable declarations”

• Handling side effects• Handling side effects

• Related work

2April 15th, 2009 Typing staged languages with record calculus

Partial evaluation vs. program
constructionconstruction

• Partial evaluation
– Generate program by staging normal program
– Erasure property

N – No open terms

• Program construction
B ild program from fragments– Build program from fragments

– Allow open terms
– No erasure propertyNo erasure property

• This work takes a program construction approach to
program generation.p g g

3April 15th, 2009 Typing staged languages with record calculus

Outline

• Motivation – The library specialization
problem and the need for subtypingproblem and the need for subtyping

• Translating staged ML to record calculus

• Typing staged ML via record calculus

• Subtyping

• “Pluggable declarations”

• Handling side effects• Handling side effects

• Related work

3April 15th, 2009 Typing staged languages with record calculus

Library specialization
• Problem: Libraries too general – users pay for

features they don’t use.y
• How can one provide a set of classes representing all

subsets of a library class’s features?
• Problem was described by Peter Sestoft in WG2.11

meeting in Portland in 2006, in context of C5
ll i libcollection library.

• A comparison of methods, including program
generation is given in Aktemur Kamin “Writing generation, is given in Aktemur, Kamin, “Writing
Customizable Libraries - A comparative study ,” Symp.
on Applied Computing, 2009.on Applied Computing, 2009.

3April 15th, 2009 Typing staged languages with record calculus

April 10th, 2009 Improving Efficiency and Safety of Program Generation 14

class LinkedList implements List { 
    Node first,last; // a doubly linked list 
    int size; 

   void reverse() { 

       Node a = first.next, b = last.prev; 
       for(int i=0; i<size/2; i++) { 
           Object swap = a.item; 
           a.item = b.item; b.item = swap; 
           a = a.next; b = b.prev; 
       } 
   }

} 

    int counter = 0; 

       counter++; 

Adapted from C5
 [Kokholm and Sestoft]

   void add(Object item) { 

       Node a = new Node(item); 
       … 
   }

       counter++; 

   void reverse() { 

       Node a = first.next, b = last.prev; 
       for(int i=0; i<size/2; i++) { 
           Object swap = a.item; 
           a.item = b.item; b.item = swap; 
           a = a.next; b = b.prev; 
       } 
   }

April 10th, 2009 Improving Efficiency and Safety of Program Generation 15

Code genLL(Code field, Code inc) { 
    return  

      `(field) 

        `(inc) 

                        ;
} 

class LinkedList implements List { 
    Node first,last; // a doubly linked list 
    int size; 

} 

   void add(Object item) { 

       Node a = new Node(item); 
       … 
   }

        `(inc) 

genLL( int counter = 0; , 
               counter++;  ) 

genLL(  ,    ) 

genLL(  ,  counter++;  ) 

✓

✓

✗

More details in
 [Aktemur and Kamin SAC09]

– Fragment type (Γ  β)
•  “The fragment has type β if evaluated in the

environment Γ.”
– Need declaration type
•  “The declaration yields in environment Γ2 if

evaluated in environment Γ1.

April 10th, 2009 Improving Efficiency and Safety of Program Generation 16

 
λopen
poly

   ◊(Γ1 Γ2)

genLL  cnt = ref 0     cnt := !cnt + 1  
genLL       0  

let genLL cf  ci =  let `(cf) in (λz. `(ci) …z)  

   ◊(ρ1 ρ2)→ ({z :β}ρ2 α)→ (ρ1  (β→β))

  :  (ρ1  (β→β))

[Kim-Yi-Calcagno POPL06]

April 10th, 2009 Improving Efficiency and Safety of Program Generation 17

genLL  cnt = ref 0     cnt := !cnt + 1  
genLL       0  

let genLL cf ci =  let `(cf) in (λz. `(ci) …z), (λw.`(ci)…w) 

   ◊(ρ1  {z :β,w :δ}ρ2)→ ({z :β,w :δ}ρ2 α)→ (ρ1  (β→β) * (δ→δ))

   :  ({z :β,w :δ}ρ1  (β→β) * (δ→δ))

unnecessary requirement on the incoming environment
makes the fragment unrunnable.

April 10th, 2009 Improving Efficiency and Safety of Program Generation 18

genLL  cnt = ref 0     cnt := !cnt + 1  
genLL       0  

let genLL cf ci =  let `(cf) in (λz. `(ci) …z), (λw.`(ci)…w) 

   

◊(ρ1 ρ2)→ (ρ2 α)→ (ρ1  (β→β) * (δ→δ))
where  {z :β}ρ2 <:ρ2  and {w :δ}ρ2 <:ρ2

  (ρ1  (β→β) * (δ→δ))

compare to   ({z :β,w :δ}ρ1  (β→β) * (δ→δ))

Subtyping can solve the problem.

Type-checking Program Generators

•  cannot completely satisfy the library
specialization problem.

•  Two requirements
– Pluggable declarations

– Subtyping

April 10th, 2009 Improving Efficiency and Safety of Program Generation 19

 
λopen
poly

will come back to these

Outline

• Motivation – The library specialization
problem and the need for subtypingproblem and the need for subtyping

• Translating staged ML to record calculus

• Typing staged ML via record calculus

• Subtyping

• “Pluggable declarations”

• Handling side effects• Handling side effects

• Related work

11April 15th, 2009 Typing staged languages with record calculus

Code Fragments vs. Record Calculus

 2+3  
 x+3  

 `(c)+3  
 λx.x+3 

run  2+3 

λr. 2+3 
λr. rix+3

λr. c(r)+3

λr. λy. let r = r with {x=y}    
             in rix+3

(λr. 2+3) { } 

April 10th, 2009 Improving Efficiency and Safety of Program Generation 20

Transformation

April 10th, 2009 Improving Efficiency and Safety of Program Generation 21

   

c


n
= c

x


n
= rn∙x

λx.e




n
= λy.let rn = rn with {x = y} in e



n

e1e2





n
= e1




n

e2




n

let x = e1 in e2





n
= let rn = rn with {x = e1





n
} in e2




n

e



n
= λrn+1. e



n+1

`(e)



n+1

= e


n
rn+1

run(e)




n
= e


n
{ }

stage = number of surrounding quotations

Examples

0 0c. let x=5 in `(c) c.let r =r with {c=c}inλ λ=

1 1

0 1

 (r.let r =r with {x=5}
 in r .c(r))

λ
())

0 0
0y. y `(y) y.let r =r with {y=y} inλ λ+ =

1 1 0 1 (r . r .y + (r .y)(r))λ

April 15th, 2009 Typing staged languages with record calculus 12

Outline

• Motivation – The library specialization
problem and the need for subtypingproblem and the need for subtyping

• Translating staged ML to record calculus

• Typing staged ML via record calculus

• Subtyping

• “Pluggable declarations”

• Handling side effects• Handling side effects

• Related work

15April 15th, 2009 Typing staged languages with record calculus

Equivalence of Staged vs. Record
Semantics

•  Can we use a record type system to type-check
a staged expression?
– “Expression e is type-safe iff is type-safe.”
– Soundness? (i.e. Preservation and Progress)
– Preservation property comes for free.

April 10th, 2009 Improving Efficiency and Safety of Program Generation 22

  e1
n⎯→⎯ e2

   

 ⇓

e1




n

β
⎯→⎯ *  e2





n

τ

τ

τ

τ

A major
theorem

   e




n

Staged calculus

Record calculus

Soundness of the Type System

•  Progress: “If e1 is typable, it is either a value or
there exists e2 such that .”

•  Has to be proven explicitly.

•  Need to put restrictions on record type system
– λx. 42  x => λx.(λr. 42)x 
– Distinguish record variables from other variables

April 10th, 2009 Improving Efficiency and Safety of Program Generation 23

  e1
n⎯→⎯ e2

Γ ∈RecordType
A∈ LegType ::= α ⏐ ι ⏐ T → A
T ∈Type ::= A ⏐ Γ

record
variables

other
variables

Record Type System

•  Record type system is sound with respect to
program generation semantics.

•  We can use the type inference algorithm to
infer a type.

•  So, how powerful is it?

April 10th, 2009 Improving Efficiency and Safety of Program Generation 24

    Δ0...Δn S e : A⇔ Δ0...ΔnR e
n :A

[Kim-Yi-Calcagno POPL06] Record type system

Type-checking Program Generators

•  Translation converts program generators to
record calculus expressions.

•  Record calculus provides a sound and powerful
type system to type-check program generators.

•  How about the two requirements motivated by
the library specialization problem?
– Subtyping

– Pluggable declarations

April 10th, 2009 Improving Efficiency and Safety of Program Generation 25

Outline

• Motivation – The library specialization
problem and the need for subtypingproblem and the need for subtyping

• Translating staged ML to record calculus

• Typing staged ML via record calculus

• Subtyping

• “Pluggable declarations”

• Handling side effects• Handling side effects

• Related work

20April 15th, 2009 Typing staged languages with record calculus

Subtyping

•  Record subtyping
– Pottier defines a constraint system combining

subtyping and records
– Can instantiate Odersky, Sulzmann, Wehr’s HM(X)

April 10th, 2009 Improving Efficiency and Safety of Program Generation 26

April 10th, 2009 Improving Efficiency and Safety of Program Generation 27

G = λc.  let x=1 in `(c) , let y=1 in `(c)  

   ({x : int,y : int}ρα)→ ({x : int,y : int}ρ (α *α))

G  0                  let x=1 in 0 , let y=1 in 0  

   ({x : int,y : int}ρ (int* int))Not Runnable

   

({x :θ1 ,y :θ2 }ρα)→ ({x :θ1 ,y :θ2 }ρ (α *α))
where  int <:θ1  and int <:θ2

Absence or concrete type

   

({x : Abs,y : Abs}ρ (int* int))
because  int <: Abs and  int <: Abs

Runnable

Subtyping

•  Record type system with subtyping
– still sound w.r.t. program generation semantics

– subsumes plain record type system

•  Translation preserves contra/co-variance
properties

April 10th, 2009 Improving Efficiency and Safety of Program Generation 29

   

Γ2 <:Γ1         A1 <: A2

(Γ1  A1) <: (Γ2  A2)   

Γ2 <:Γ1         A1 <: A2

Γ1 → A1 <: Γ2 → A2

Outline

• Motivation – The library specialization
problem and the need for subtypingproblem and the need for subtyping

• Translating staged ML to record calculus

• Typing staged ML via record calculus

• Subtyping

• “Pluggable declarations”

• Handling side effects• Handling side effects

• Related work

25April 15th, 2009 Typing staged languages with record calculus

Pluggable Declarations

•  Extend the syntax, semantics and the type
system

•  Soundness is preserved, proof provided in the
thesis

April 10th, 2009 Improving Efficiency and Safety of Program Generation 30

let genLL cf ci =   let `(cf) in  (λz. `(ci) …z)  

genLL  cnt = ref 0     cnt := !cnt + 1  
genLL         

 
λopen
poly

Pluggable Declarations

•  Pluggable declarations are syntactic sugar.♮

•  Define a desugaring function δ:

April 10th, 2009 Improving Efficiency and Safety of Program Generation 31

 x = e            => λc. let x = e in `(c)  
let `(e1) in e2 => `(e1 e2) 

  

e1
n⎯→⎯ e2  ⇒ δ(e1)

n⎯→⎯ * δ(e2)

Δ0...Δn  e : A ⇒ δ(Δ0)...δ(Δn) δ(e) :δ(A) 

♮ Thanks to Prof. Chung-chieh Shan

Translating Pluggable Declarations

•  Translation of pluggable declarations to record
calculus
– Need to be careful about “legitimate” types to

preserve soundness

April 10th, 2009 Improving Efficiency and Safety of Program Generation 32

Outline

• Motivation – The library specialization
problem and the need for subtypingproblem and the need for subtyping

• Translating staged ML to record calculus

• Typing staged ML via record calculus

• Subtyping

• “Pluggable declarations”

• Handling side effects• Handling side effects

• Related work

30April 15th, 2009 Typing staged languages with record calculus

Handling side effects

• In current translation, terms at level zero go
inside abstractions: < `(e) > => λr e’ inside abstractions: < … (e)… > => λr. … e ….
This changes order of evaluation.

A li t d t l ti i d fi d • A more complicated translation is defined,
such that <…`(e)… > => (λπ.λr. … π …) e’

• Order of evaluation preserved

• Properties proven for side-effect free language
above can be proven here.

April 15th, 2009 Typing staged languages with record calculus 31

Outline

• Motivation – The library specialization
problem and the need for subtypingproblem and the need for subtyping

• Translating staged ML to record calculus

• Typing staged ML via record calculus

• Subtyping

• “Pluggable declarations”

• Handling side effects• Handling side effects

• Related work

33April 15th, 2009 Typing staged languages with record calculus

Related Work
•  [Kameyama-Kiselyov-Shan PEPM08]
– Not multi-stage
– Driven by type annotations
• Higher-rank polymorphism

– No type inference
– Conjecture stated for operational semantics relation

•  [Chen-Xi ICFP03]
– Translation to first-order abstract syntax
• Can convert back to staged language

–  Program variables converted to de Bruijn indices
•  Bindings vanishing or occurring “unexpectedly”

April 10th, 2009 Improving Efficiency and Safety of Program Generation 34

Related Work

•  [Kim-Yi-Calcagno POPL06]
– Starting point for our work (added recursion)

•  [Nanevski 02]
– Free variables of a fragment become part of its type

– The list of free variables in a type can be loosened

• Subtyping

• Not sufficient for library specialization because
no type information is kept – only names

April 10th, 2009 Improving Efficiency and Safety of Program Generation 35

Contributions

• Record calculus provides a sound and powerful
type system for program generationtype system for program generation

• Existing knowledge in the record calculus
h i f lresearch is very useful

– E.g. subtyping

• Type system is extensible with pluggable
declarations and side-effecting expressions

• Library specialization problem

(See loome.cs.uiuc.edu pubs page for details…) (See loome.cs.uiuc.edu pubs page for details…)

April 15th, 2009 Typing staged languages with record calculus 36

Future Work

• Staged typing
A staged type system with subtyping that does not – A staged type system with subtyping that does not
depend on record calculus

Extending the type system to a procedural/object– Extending the type system to a procedural/object-
oriented language

• Side-effecting expressions are already handledSide effecting expressions are already handled

• Inheritance may pose difficulty

April 15th, 2009 Typing staged languages with record calculus 37

Extra Slides

April 10th, 2009 Improving Efficiency and Safety of Program Generation 40

Translating Pluggable Declarations

•  First attempt
–   5  `( x = 2 ) => (λr2.5) ((λr2.r2 with {x=2})r1) 

•  Second attempt
–   x = 1   5  passes the type checker.

•  Solution:

April 10th, 2009 Improving Efficiency and Safety of Program Generation 44

   〈x = e〉n = λrn.rn  with {x = en+1}

type-correct type-incorrect

   〈x = e〉n = λc.〈let x = e in `(c)〉n

   

〈x = e〉n = λκ.λc.〈let x = e in `(c)〉n

let `(e1) in e2
n = `(e1  κ  〈e2 〉)

n

Cannot Type

•  Because of rank-1 polymorphism, cannot type

•  Polymorphic types are not preserved after
antiquotation/quotation

April 10th, 2009 Improving Efficiency and Safety of Program Generation 47

  〈let y = λx.x in `(〈y 1, y 'a'〉)〉

  λy.(y 1, y 'a')

