
Farms,	Pipes,	Streams	and	Reforestation
Type-Directed	Parallelisation

David	Castro,	Kevin	Hammond	 and	Susmit Sarkar
University	of	St	Andrews,	UK

kevin@kevinhammond.net

IFIP	Working	Group	2.11	Meeting,	 Bloomington,	 Indiana,	23/8/16

RePhrase Project:	Refactoring	Parallel	Heterogeneous	Software
– a	Software	Engineering	Approach
(ICT-644235),		2015-2018,	€3.6M	budget

8	Partners,	6	European	countries
UK,	Spain,	 Italy,	Austria,	Hungary,	Israel

Coordinated	by	Kevin	Hammond,	 St	Andrews

0

ParaFormance Project: Parallel	Patterns	 for	Heterogeneous	Multicore	Systems
(ICT-288570),		2015-2018,	£537K	budget

Goal:	Formation	of	High-Growth	 Company	 of	Scale	by	2023

Coordinated	 by	Kevin	Hammond,	 St	Andrews

The	Problem

• We	need	to	choose	the	best	parallel	abstractions
• Algorithmic	skeletons [Cole	1989]	implement	patterns

• We	need	a	formal	way	to	reason	about	parallel	structure
§ Correctness	 of	transformations
§ Reasoning	about	performance

4

f1
f1

f1

f2
f2

f2

f1
f1

f1

f2

Example	Skeleton:	Parallel	Task	Farms

§ Task	Farms	use	a	fixed	number	of	workers
§ Each	worker	applies	the	same	operation	(f)
§ f is	applied	to	each	of	the	inputs	in	a	stream.

5

f

f
…

f

…,	x10,	x9,	x8

x6

x7

x5

f x3

f x2

f x4

f	x1,	f	x0,	…

Example	Skeleton:	Parallel	Pipeline

§ Parallel	pipelines	compose	two	operations	(f and	g)	
§ over	the	elements	of	an	input	stream
§ f and g are	run	in	parallel

6

f g
…
x9
x8

g	(f	x1)
g	(f	x0)

f	x5
f	x4

g	(f	x2)f	x6

f	x3x7

7

Example

Image	Merge

8

Image	merging	composes	two	operations,	merge and	mark	

Possible	implementations	include:

Choosing	an	Implementation

9

Decorate	the	function	type	with	IM(n,m)	

where

Now	the	type	system	automatically	selects

We	can	guarantee that	this	is	functionally	equivalent to	imgMerge

Inferring	parallel	structures

10

We	can	leave	holes	in	the	types,	e.g.

IM(n,m)	=	_	||	FARM	m	_

replaces	_	with	the	simplest	possible	structures

IM(n,m)	=		min	cost	(_		||	FARM	m	_)

replaces	_	with	the	least	cost	structures.

We	can	choose	the	provably	least	cost	skeleton	

11

Basic	Semantics

Syntax	of	Skeletons

12

funT lifts	an	atomic	function	to	a	collection	type	T
dc	 represents	divide	and	conquer	over	collection	T
fb	 introduces	feedback

Skeleton	Denotational Semantics

13

Base	semantics,	S		(⍴ is	a	global	environment	of	function	defns)

Lifted	to	a	streaming	form,	P	over	collection	type	T

Morphisms	 for	Divide-and-Conquer

14

Catamorphism (fold)

Anamorphism (unfold)

Morphisms	 for	Streams

15

Given	a	bifunctor,	G,	maps	over	collection	T	are

Iteration

16

Easy	to	define	using	the	fix-point	combinator,	Y	f	=	f	(Y	f)

17

Generalising
Recursion	Patterns

Hylomorphisms

18

map,	cata and	ana are	just	special	cases	of	hylomorphisms

Hylomorphisms are	general	recursion	patterns

For	hyloF f	g	 μF recursive	call	tree
g how	inputs	are	split
f how	results	are	combined

Example:	Quicksort

19

or

All	the	World’s	a	Hylomorphism!

20

21

Structure	in	Types

Introducing	Parallel	Patterns

§ The	type	system	uses	a	structure-equivalence	relation	that	
describes	when	two	programs	are	extensionally	equivalent.

§ The	type-checking	algorithm	needs	to	decide	these	structure-
equivalences.

§ The	type-checking	algorithm	also	needs	to	unify	structures,	
modulo	this	structure-equivalence	relation.

Program	Structure Target	parallel	structure	

Sequential	normalised
structure

Sequential	normalised
structure

?

Syntax	of	Structured	Types

23

Structure-Annotated	Type	Rules

24

Convertibility

25

Plus	some	other	rules	derived	from	the	hylomorphism laws.
We	use	this	to	produce	a	confluent	rewriting	system.

Parallelism	Erasure	

26

Rewrite	rules	derived	from	convertibility

Repeated	to	produce	a	confluent	rewriting	system

Normalisation

27

The	rewrite	rules	are	derived	from	basic	laws

Used	to	define	a	normalisation procedure

We	can	now	prove	equivalence	of	two	parallel	terms	by:
i) erasing	parallelism	using	erase,	
ii) normalising using	norm,	and	
iii) testing	for	equivalence

…

28

Example

QuickSort Revisited

29

Start	with	a	sequential	version

To	create	a	parallel	divide-and-conquer	version,	we	need	to	decide

This	is	easily	done	using	a	simple	parallelism	erasure

Inferrring More	Complex	Parallel	
Structure

30

Now	consider	a	more	complex	structure

Parallelism	erasure	on	the	RHS	gives

Normalisation of	the	LHS	(using	HYLO-SPLIT	etc)	gives

Normalisation of	the	RHS	gives

Inferrring More	Complex	Parallel	
Structure	(2)

31

We	need	to	unify the	normalised forms

and

Inferrring More	Complex	Parallel	
Structure	(3)

32

Substituting	back	gives	us	the	desired	parallel	form

We	can	then	use	equivalence	to	give	the	actual	program

Costs

33

For	1000	lists	of	30,000,000	elements

Predicted	v.	Actual	Speedup

Image	Convolution	of	500	images	on	titanic,	a 2.4GHz	24-core,	AMD	Opteron	6176	architecture,	
running	Centos	Linux	2.6.18-274.e15.	Dashed	lines	are	predictions.

34

7.3 Image convolution

Image convolution is widely used in image processing applications. The convo-
lution algorithm is the composition of two functions read and process. The
function read reads an image from a file, and process processes the image.

tread, tproc : Timing
IC, BIC : SkelTy
IC = Pipe (Farm (Func {ti=tread})) (Farm (Func {ti=tproc}))
BIC = bestInst titanic IC

imageConv1 : Par BIC FilePath Img
imageConv1 = skel [readI, processI]

imageConv2 : Auto titanic FilePath Img
imageConv2 = bestSkel [readI, processI] [tread, tproc]

1 2 4 6 8 10 12 14 16 18 20 22

1
2

4

6

8

10

12

14

16

18

20

22

n
2

Workers

S
p
ee
d
u
p

Pipe (Farm 6 Func) (Farm n
2

Func)

Farm n
2

(Seq Func Func)

Farm n
2

(Pipe Func Func)

(a) titanic

1 4 8 16 24 32 38 46 54 62

1
4

8

12

16

20

24

28

32

36

40

44

n
2

Workers

Farm n
2

(Seq Func Func)

Pipe (Farm 12 Func) (Farm n
2

Func)

Farm n
2

(Pipe Func Func)

(b) lovelace

Fig. 6. Di↵erent Parallel Structures for Image Convolution, 500 Images 1024 * 1024

8 Related Work

Work has also gone into boiling down skeletons into a small set (included in the
skeletons we consider) which can express a variety of patterns [17].

Scaife et al [33] present the design and implementation of a parallelising
compiler that automatically extracts parallelism for Standard ML. They exploit
parallelism in the familiarmap and fold HOFs by using nested parallel skeletons.

Refactoring. Roughly, rewriting systems consist of a set of objects with some
relations on how to transform those objects. Rewriting rules for transforming
di↵erent parallel skeletons into other kinds of parallelism have been used for
the implementation of di↵erent refactoring techniques [1, 2, 11]. In this work we
provide a formalisation of rewriting rules for parallel skeletons that allow us to
ensure that no incorrect parallel structure is introduced.

1 2 4 6 8 10 12 14 16 18 20 22

1
2

4

6

8

10

12

14

16

18

n Workers

S
p
ee
d
u
p

Farm n Func

N = 1024
N = 2048

(a) Matrix Multiplication

1 2 3 4 5 6 7 8 9 10 11 12

2

3

4

5

6

n
2

Workers

S
p
ee
d
u
p

Farm n (Pipe Func Func)

(b) Image Merge

1 2 4 6 8 10 12 14 16 18 20 22

1
2

4

6

8

10

12

14

16

18

20

n
2

Workers

S
p
ee
d
u
p

Pipe (Farm n

1

Func) (Farm n

2

Func)

n
1

= 1
n
1

= 2
n
1

= 4
n
1

= 6
n
1

= 8

(c) Image Conv

Fig. 5. Speedups vs predictions (titanic).

35

Conclusion

Conclusions

• First-ever	 treatment	 of	parallelism	that	reflects	 parallel	structure	 in	types

• Several	advantages	 to	exposing	parallel	structure	 in	types
• clear	separation	 between	 the	structure	and	the	functionality
• documentation of	how	a	program	was	parallelized
• easy	to	change	the	parallel	structure of	a	program	without	modifying	the	

functional	behaviour

• Reasoning	about	costs	of	different	 parallel	structure	 is	very	powerful
§ Automatically find	suitable	parallel	structures
§ Compile-time	 information	about	the	run-time	 behaviour
§ Automatically rewrite	programs	to	minimize	costs

36

Future	Work

• Other	patterns,	e.g.	stencil	and	bulk	synchronous	parallelism

• More	detailed	cost	models	(see	e.g.	Hammond	et	al,	2016)

• Dynamic	Analysis	is	also	possible

• Allow	(certain	kinds	of)	side	effects	in	the	workers

• Implement	back-ends.	Run	our	structured	programs!

• Larger	case	studies

37

Paper	Available	on	Request

38

To	appear	in	ICFP	2016

THANK	YOU!

http://rephrase-ict.eu

@rephrase_eu

http://paraphrase-ict.eu

39

