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The	Problem

• We	need	to	choose	the	best	parallel	abstractions
• Algorithmic	skeletons [Cole	1989]	implement	patterns

• We	need	a	formal	way	to	reason	about	parallel	structure
§ Correctness	 of	transformations
§ Reasoning	about	performance
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Example	Skeleton:	Parallel	Task	Farms

§ Task	Farms	use	a	fixed	number	of	workers
§ Each	worker	applies	the	same	operation	(f)
§ f is	applied	to	each	of	the	inputs	in	a	stream.
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Example	Skeleton:	Parallel	Pipeline

§ Parallel	pipelines	compose	two	operations	(f and	g)	
§ over	the	elements	of	an	input	stream
§ f and g are	run	in	parallel
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Example



Image	Merge
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Image	merging	composes	two	operations,	merge and	mark	

Possible	implementations	include:



Choosing	an	Implementation
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Decorate	the	function	type	with	IM(n,m)	

where

Now	the	type	system	automatically	selects

We	can	guarantee that	this	is	functionally	equivalent to	imgMerge



Inferring	parallel	structures
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We	can	leave	holes	in	the	types,	e.g.

IM(n,m)	=	_	||	FARM	m	_

replaces	_	with	the	simplest	possible	structures

IM(n,m)	=		min	cost	(_		||	FARM	m	_)

replaces	_	with	the	least	cost	structures.

We	can	choose	the	provably	least	cost	skeleton	
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Basic	Semantics



Syntax	of	Skeletons
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funT lifts	an	atomic	function	to	a	collection	type	T
dc	 represents	divide	and	conquer	over	collection	T
fb	 introduces	feedback



Skeleton	Denotational Semantics
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Base	semantics,	S		(⍴ is	a	global	environment	of	function	defns)

Lifted	to	a	streaming	form,	P	over	collection	type	T



Morphisms	 for	Divide-and-Conquer
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Catamorphism (fold)

Anamorphism (unfold)



Morphisms	 for	Streams
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Given	a	bifunctor,	G,	maps	over	collection	T	are



Iteration
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Easy	to	define	using	the	fix-point	combinator,	Y	f	=	f	(Y	f)
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Generalising
Recursion	Patterns



Hylomorphisms
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map,	cata and	ana are	just	special	cases	of	hylomorphisms

Hylomorphisms are	general	recursion	patterns

For	hyloF f	g	 μF recursive	call	tree
g how	inputs	are	split
f how	results	are	combined



Example:	Quicksort
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or



All	the	World’s	a	Hylomorphism!
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Structure	in	Types



Introducing	Parallel	Patterns

§ The	type	system	uses	a	structure-equivalence	relation	that	
describes	when	two	programs	are	extensionally	equivalent.

§ The	type-checking	algorithm	needs	to	decide	these	structure-
equivalences.

§ The	type-checking	algorithm	also	needs	to	unify	structures,	
modulo	this	structure-equivalence	relation.

Program	Structure Target	parallel	structure	

Sequential	normalised
structure

Sequential	normalised
structure

?



Syntax	of	Structured	Types
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Structure-Annotated	Type	Rules
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Convertibility
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Plus	some	other	rules	derived	from	the	hylomorphism laws.
We	use	this	to	produce	a	confluent	rewriting	system.



Parallelism	Erasure	
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Rewrite	rules	derived	from	convertibility

Repeated	to	produce	a	confluent	rewriting	system



Normalisation
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The	rewrite	rules	are	derived	from	basic	laws

Used	to	define	a	normalisation procedure

We	can	now	prove	equivalence	of	two	parallel	terms	by:
i) erasing	parallelism	using	erase,	
ii) normalising using	norm,	and	
iii) testing	for	equivalence

…
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Example



QuickSort Revisited
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Start	with	a	sequential	version

To	create	a	parallel	divide-and-conquer	version,	we	need	to	decide

This	is	easily	done	using	a	simple	parallelism	erasure



Inferrring More	Complex	Parallel	
Structure
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Now	consider	a	more	complex	structure

Parallelism	erasure	on	the	RHS	gives

Normalisation of	the	LHS	(using	HYLO-SPLIT	etc)	gives

Normalisation of	the	RHS	gives



Inferrring More	Complex	Parallel	
Structure	(2)
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We	need	to	unify the	normalised forms

and



Inferrring More	Complex	Parallel	
Structure	(3)
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Substituting	back	gives	us	the	desired	parallel	form

We	can	then	use	equivalence	to	give	the	actual	program



Costs
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For	1000	lists	of	30,000,000	elements



Predicted	v.	Actual	Speedup

Image	Convolution	of	500	images	on	titanic,	a 2.4GHz	24-core,	AMD	Opteron	6176	architecture,	
running	Centos	Linux	2.6.18-274.e15.	Dashed	lines	are	predictions.
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7.3 Image convolution

Image convolution is widely used in image processing applications. The convo-
lution algorithm is the composition of two functions read and process. The
function read reads an image from a file, and process processes the image.

tread, tproc : Timing
IC, BIC : SkelTy
IC = Pipe (Farm (Func {ti=tread})) (Farm (Func {ti=tproc}))
BIC = bestInst titanic IC

imageConv1 : Par BIC FilePath Img
imageConv1 = skel [readI, processI]

imageConv2 : Auto titanic FilePath Img
imageConv2 = bestSkel [readI, processI] [tread, tproc]
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Fig. 6. Di↵erent Parallel Structures for Image Convolution, 500 Images 1024 * 1024

8 Related Work

Work has also gone into boiling down skeletons into a small set (included in the
skeletons we consider) which can express a variety of patterns [17].

Scaife et al [33] present the design and implementation of a parallelising
compiler that automatically extracts parallelism for Standard ML. They exploit
parallelism in the familiarmap and fold HOFs by using nested parallel skeletons.

Refactoring. Roughly, rewriting systems consist of a set of objects with some
relations on how to transform those objects. Rewriting rules for transforming
di↵erent parallel skeletons into other kinds of parallelism have been used for
the implementation of di↵erent refactoring techniques [1, 2, 11]. In this work we
provide a formalisation of rewriting rules for parallel skeletons that allow us to
ensure that no incorrect parallel structure is introduced.
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Fig. 5. Speedups vs predictions (titanic).
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Conclusion



Conclusions

• First-ever	 treatment	 of	parallelism	that	reflects	 parallel	structure	 in	types

• Several	advantages	 to	exposing	parallel	structure	 in	types
• clear	separation	 between	 the	structure	and	the	functionality
• documentation of	how	a	program	was	parallelized
• easy	to	change	the	parallel	structure of	a	program	without	modifying	the	

functional	behaviour

• Reasoning	about	costs	of	different	 parallel	structure	 is	very	powerful
§ Automatically find	suitable	parallel	structures
§ Compile-time	 information	about	the	run-time	 behaviour
§ Automatically rewrite	programs	to	minimize	costs
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Future	Work

• Other	patterns,	e.g.	stencil	and	bulk	synchronous	parallelism

• More	detailed	cost	models	(see	e.g.	Hammond	et	al,	2016)

• Dynamic	Analysis	is	also	possible

• Allow	(certain	kinds	of)	side	effects	in	the	workers

• Implement	back-ends.	Run	our	structured	programs!

• Larger	case	studies
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