

Farms, Pipes, Streams and Reforestation Type-Directed Parallelisation

David Castro, Kevin Hammond and Susmit Sarkar University of St Andrews, UK

kevin@kevinhammond.net

IFIP Working Group 2.11 Meeting, Bloomington, Indiana, 23/8/16

RePhrase Project: Refactoring Parallel Heterogeneous Software – a Software Engineering Approach (ICT-644235), 2015-2018, €3.6M budget

8 Partners, 6 European countries UK, Spain, Italy, Austria, Hungary, Israel

Coordinated by Kevin Hammond, St Andrews

ParaFormance Project: Parallel Patterns for Heterogeneous Multicore Systems (ICT-288570), 2015-2018, £537K budget

Goal: Formation of High-Growth Company of Scale by 2023

Coordinated by Kevin Hammond, St Andrews

The Problem

- We need to choose the best parallel abstractions
	- *Algorithmic skeletons* [Cole 1989] implement patterns
- We need a formal way to reason about parallel structure
	- Correctness of transformations
	- Reasoning about performance

Example Skeleton: Parallel Task Farms

- **Task Farms use a fixed number of workers**
	- **Each worker applies the same operation (f)**
	- **F f** is applied to each of the inputs in a stream.

Example Skeleton: Parallel Pipeline

- **Parallel pipelines compose two operations (f and g)**
	- over the elements of an input stream
	- **f** and **g** are run in parallel

St Andrews

Example

Image merging composes two operations, merge and mark

```
imgMerge: List(Img \times img) \rightarrow ListImgimgMerge = map (merge \circ mark)
```
Possible implementations include:

```
imgMerge_1 = farm n (fun (merge \circ mark))imgMerge_{2} = farm n (fun mark) || farm m (fun merge)
imgMerge_{3} = farm n (fun merge) || fun mark
```
Choosing an Implementation

Decorate the function type with $IM(n,m)$

$$
\begin{array}{l} \mathsf{imgMerge} \, : \, \mathsf{List}(\mathsf{Img} \times \mathsf{Img}) \xrightarrow{\mathrm{IM} \, (n,m)} \, \mathsf{List} \, \mathsf{Img} \\ \mathsf{imgMerge} \, = \, \mathsf{map} \ (\mathsf{merge} \, \circ \, \mathsf{mark}) \end{array}
$$

where

$$
IM(n, m) = FARM n (FUN A) || FARM m (FUN A)
$$

Now the type system automatically selects

 $\mathsf{imgMerge}_2 = \mathsf{farm}\;n\;(\mathsf{fun}\; \mathsf{mark}) \parallel \mathsf{farm}\;m\;(\mathsf{fun}\; \mathsf{merge})$

We can *guarantee* that this is *functionally equivalent* to imgMerge

We can leave holes in the types, e.g.

 $IM(n,m) =$ || FARM m

replaces with the simplest possible structures

 $IM(n,m) = min cost($ || FARM m)

replaces with the least cost structures.

We can choose the provably least cost skeleton

Basic Semantics

$p \in P \ ::= \text{fun}_T f | p_1 || p_2 | \text{dc}_{n,T,F} f g | \text{form } n p | \text{fb } p$

- fun_{τ} lifts an atomic function to a collection type T
- dc represents divide and conquer over collection T
- fb introduces feedback

Base semantics, S (ρ is a global environment of function defns)

$$
\begin{array}{rcl}\nS[\![p : T A \rightarrow T B]\!] & : & [\![A \rightarrow B]\!] \\
S[\![\text{fun } f]\!] & = & \hat{\rho}(f) \\
S[\![p_1 \parallel p_2]\!] & = & S[\![p_2]\!] \circ S[\![p_1]\!] \\
S[\![\text{form } n p]\!] & = & S[\![p]\!] \\
S[\![\text{for } p]\!] & = & \text{iter } S[\![p]\!] \\
S[\![\text{dc}_{n,T,F} f g]\!] & = & \text{cat } a_F (\hat{\rho}(f)) \circ \text{anc } F (\hat{\rho}(g))\n\end{array}
$$

Lifted to a streaming form, P over collection type T

$$
\begin{array}{lllll} \llbracket p & \colon & T \: A \to T \: B \rrbracket & & \colon & \llbracket T \: A \to T \: B \rrbracket \\ \llbracket p \rrbracket & & \colon & \llbracket map \colon S \llbracket p \rrbracket \end{array}
$$

Morphisms for Divide-and-Conquer

$$
\mathcal{S}[\![\mathsf{dc}_{n,T,F} f g]\!] \quad = \quad \text{cata}_F \;(\hat{\rho}(f)) \circ \text{ana}_F \;(\hat{\rho}(g))
$$

Catamorphism (fold)

$$
cata_F
$$
 : $(F A \rightarrow A) \rightarrow \mu F \rightarrow A$
 $cata_F f$ = $f \circ F$ $(cata_F f) \circ out_F$

Anamorphism (unfold)

$$
ana_F : (A \to F A) \to A \to \mu F
$$

$$
ana_F g = in_F \circ F (ana_F g) \circ g
$$

Morphisms for Streams

$$
\llbracket p \rrbracket \qquad \qquad = \qquad map \Big\{ T \Big\}
$$

Given a *bifunctor, G*, maps over collection T are

$$
\begin{array}{ll} map_T f & = \operatorname{cata}_{G A}(\operatorname{in}_{G B} \circ G f id) \\ & = \operatorname{an} \operatorname{a}_{G B} (G f id \circ \operatorname{out}_{G A}) \end{array}
$$

$$
\mathcal{S}[\![\text{fb } p]\!] \qquad \qquad = \quad \text{iter } \mathcal{S}[\![p]\!]
$$

Easy to define using the fix-point combinator, $Y f = f(Y f)$

$$
\begin{array}{ll}\n\text{iter} & \colon (A \to A + B) \to A \to B \\
\text{iter } f & = \mathsf{Y} \ (\lambda \ g. (g \nabla id) \circ f)\n\end{array}
$$

Generalising Recursion Patterns

Hylomorphisms are general recursion patterns

 $\left.\begin{array}{lll} hylo_F & : & (F \ B \to B) \to (A \to F \ A) \to A \to B \\ hylo_F\, f \,\, g & = & f \circ F \ (hylo_F\, f \,\, g) \circ g \end{array}\right.$ For hylo_F f g and μ F recursive call tree g bow inputs are split f how results are combined

map, *cata* and *ana* are just special cases of hylomorphisms

$$
T A = \mu(F A)
$$

\n
$$
map_T f = hylo_{FA} (in_{FB} \circ (F f id)) out_{FA},
$$

\nwhere $A = dom(f)$ and $B = codom(f)$
\n
$$
cata_F f = hylo_F f out_F
$$

\n
$$
ana_F f = hylo_F in_F f
$$

Example: Quicksort

split
\nsplit nil
\nsplit (cons x l) =
$$
inj_1()
$$

\nsplit (cons x l) = $inj_2 (x, \text{ leg } x l, \text{gt } x l)$
\njoin
\njoin
\n $: T A (\text{List } A) \rightarrow \text{List } A$
\njoin $(inj_1 ())$ = nil
\njoin $(inj_2 (x, l, r))$ = l + + cons x r
\nqsort
\n: List A \rightarrow List A
\nqsort = $cata_{TA}$ join o ana_{TA} split

or

$$
\mathsf{qsort} = \mathit{hylo}_{T|A} \mathsf{join} \mathsf{split}
$$

All the World's a Hylomorphism!

 \boldsymbol{p}

$$
e \in E \quad ::= \quad s \quad | \quad \text{par}_T \quad p
$$
\n
$$
s \in S \quad ::= \quad f \quad | \quad e_1 \circ e_2 \quad | \quad \text{hylo}_F \quad e_1 \quad e_2
$$
\n
$$
p \in P \quad ::= \quad \text{fun} \quad s \mid p_1 \mid p_2 \mid \text{dc}_{n,F} \quad s_1 \quad s_2 \mid \text{farm} \quad n \quad p \mid \text{fb}
$$
\n
$$
\llbracket \text{par}_T \quad p \rrbracket \quad = \quad \text{map}_T \mathcal{S} \llbracket p \rrbracket
$$
\n
$$
\therefore \quad \mathcal{S} \llbracket \text{fun} \quad e \rrbracket \quad = \quad \llbracket e \rrbracket
$$
\n
$$
\mathcal{S} \llbracket \text{dc}_{n,F} \quad e_1 \quad e_2 \rrbracket \quad = \quad \text{hylo}_F \; \llbracket e_2 \rrbracket \; \llbracket e_1 \rrbracket
$$

iter $f = hylo_{(+B)} (id \nabla id) f$

Structure in Types

Introducing Parallel Patterns

- The type system uses a structure-equivalence relation that describes when two programs are extensionally equivalent.
- **The type-checking algorithm needs to decide these structure**equivalences.

 \blacksquare The type-checking algorithm also needs to unify structures, modulo this structure-equivalence relation.

Syntax of Structured Types

$$
e\,:\,A\,\stackrel{\sigma}{\to}\,B
$$

$$
\begin{array}{lll}\n\sigma \in \Sigma & ::= & \sigma_{s} \mid \text{PAR}_{F} \sigma_{p} \\
\sigma_{s} \in \Sigma_{s} & ::= & \text{A} \mid \sigma \circ \sigma \mid \text{HYLO}_{F} \sigma \sigma \\
\sigma_{p} \in \Sigma_{p} & ::= & \text{Fun}_{F} \sigma_{s} \mid & \text{DC}_{n,F} \sigma_{s} \sigma_{s} \\
& & | & \sigma_{p} \mid \sigma_{p} \mid & \text{FARM}_{n} \sigma_{p} \mid \text{FB } \sigma_{p}\n\end{array}
$$

Structure-Annotated Type Rules

Convertibility

$$
\frac{\vdash e : A \xrightarrow{\sigma_1} B \quad \sigma_1 \equiv \sigma_2}{\vdash e : A \xrightarrow{\sigma_2} B}
$$
\n
$$
\frac{\sigma_1 \equiv_s \sigma_2}{\sigma_1 \equiv \sigma_2} \qquad \frac{\sigma_1 \equiv_p \sigma_2}{\text{PAR}_F \sigma_1 \equiv \text{PAR}_F \sigma_2}
$$
\n
$$
\text{PAR}_F \text{ (FUN } \sigma) \equiv \text{MAP}_F \sigma \qquad \text{(PAR-EQUIV)}
$$
\n
$$
\text{FUN } \sigma_1 \parallel \text{FUN } \sigma_2 \equiv_p \text{ FUN } (\sigma_2 \circ \sigma_1) \qquad \text{(PIPE-EQUIV)}
$$
\n
$$
\text{DCA}_F F \sigma_1 \sigma_2 \equiv_p \text{ FUN } (\text{HYLO}_F \sigma_1 \sigma_2) \qquad \text{(DC-EQUIV)}
$$
\n
$$
\text{FARM}_n \sigma \equiv_p \sigma \qquad \text{(FARM-EQUIV)}
$$
\n
$$
\text{FB (FUN } \sigma) \equiv_p \text{ FUN } (\text{ITER } \sigma) \qquad \text{(FB-EQUIV)}
$$

Plus some other rules derived from the hylomorphism laws. We use this to produce a confluent rewriting system.

Parallelism Erasure

Rewrite rules derived from convertibility

∼o

Repeated to produce a confluent rewriting system

$$
\begin{array}{rcl}\n\text{erase} & : & \Sigma \to \overline{\Sigma}_{\mathsf{s}} \\
\text{erase } \sigma & = & \sigma', \text{ s.t. } \sigma \leadsto_{\mathsf{p}}^* \sigma' \ \wedge \ \nexists \sigma'' \ \text{s.t. } \sigma'' \leadsto_{\mathsf{p}} \sigma''\n\end{array}
$$

The rewrite rules are derived from basic laws

HYLOF $\sigma_1 \sigma_2$ \rightsquigarrow_s CATAF $\sigma_1 \circ$ ANAF $\sigma_2 \Leftarrow \sigma_1 \neq \text{IN} \land \sigma_2 \neq \text{OUT}$ (HYLO-SPLIT) CATAF $(\sigma_1 \circ F \sigma_2) \rightsquigarrow_s$ CATAF $\sigma_1 \circ \text{MAP}_F \sigma_2 \Leftarrow \sigma_1 \neq \text{IN}$ (CATA-SPLIT) ANA_F $(F \sigma_1 \circ \sigma_2) \rightsquigarrow_s$ MAP_F $\sigma_1 \circ$ ANA_F $\sigma_2 \Leftarrow \sigma_2 \neq 0$ UT $(ANA-SPLIT)$

Used to define a normalisation procedure

…

$$
\begin{array}{lcl} \text{norm}_s \; \sigma & = & \sigma', \text{ s.t. } \sigma \leadsto_s^* \sigma' \ \wedge \ \nexists \sigma'' \text{ s.t. } \sigma' \leadsto_s \sigma'' \\ \text{norm} & = & \text{norm}_s \circ \text{erase} \end{array}
$$

We can now prove equivalence of two parallel terms by:

- *i*) erasing parallelism using erase,
- *ii) normalising using norm, and*
- *iii) testing for equivalence*

Example

Start with a sequential version

qsorts : List(List A) \rightarrow List(List A) gsorts $=$ map_{List} (hylo_{F A} merge div)

To create a parallel divide-and-conquer version, we need to decide $\text{MAP}_L(\text{HYLO}_F \text{ A A}) \cong \text{PAR}_L(\text{DC}_{n,F} \text{ A A})$

This is easily done using a simple parallelism erasure

Inferrring More Complex Parallel Structure

Now consider a more complex structure

$$
MAP_L (HYLO_F A A) \cong PAR_L (FARM_n - || -)
$$

Normalisation of the LHS (using HYLO-SPLIT etc) gives

$$
MAPL
$$
 (HYLO_F A A) \rightsquigarrow ^{*} $MAPL$ (CATA_F A) o $MAPL$ (ANA_F A)

Parallelism erasure on the RHS gives

$$
\text{PAR}_L \left(\text{FARM } n m_2 \parallel m_1 \right) \rightsquigarrow^* \text{MAP}_L \left(m'_1 \circ m'_2 \right) \n\delta = \{ m_1 \sim \text{Fun } m'_1, m_2 \sim \text{Fun } m'_2 \}
$$

Normalisation of the RHS gives

$$
\text{map}_L (m'_1 \circ m'_2) \leadsto^* \text{map}_L m'_1 \circ \text{map}_L m'_2
$$

Inferrring More Complex Parallel Structure (2)

We need to unify the normalised forms

$$
MAP_L (CATAF A) o MAPL (ANAF A)
$$

and

$$
\text{map}_{L} \left(\text{cata}_{F} \text{ a} \right) \circ \text{map}_{L} \left(\text{and } \text{map}_{L} m'_{1} \circ \text{map}_{L} m'_{2} \right) \right)
$$

$$
\Rightarrow \Delta_{1} = \left\{ m'_{1} \sim \text{cata}_{F} \text{ a}, m'_{2} \sim \text{and } \text{map}_{R} \text{ a} \right\}
$$

 $\Delta = \{\delta\} \otimes \Delta_1$

Inferrring More Complex Parallel Structure (3)

Substituting back gives us the desired parallel form

```
PARL (FARM<sub>n</sub> (FUN (ANA<sub>F</sub> A)) || FUN (CATA<sub>F</sub> A))
```
We can then use equivalence to give the actual program

```
map<sub>List</sub> (hylo<sub>F A</sub> merge div) \rightsquigarrow^*par<sub>list</sub> (farm n (fun (ana<sub>FA</sub> div)) || fun (cata<sub>FA</sub> merge))
```
Costs

For 1000 lists of 30,000,000 elements

$$
\mathsf{qsorts} \: : \: \mathsf{List}(\mathsf{List}\:A) \xrightarrow{\text{min cost}} \mathsf{List}(\mathsf{List}\:A)
$$

cost
$$
(PAR_L (DC_{n,F} A_{c_1} A_{c_2}))
$$
 sz
\n= max $\{ max_{1 \le i \le n} \{ c_2 (|A_{c_2}|^i sz) \}$, cost $(HYLO_{F} A_{c_1} A_{c_2}) (|A_{c_2}|^n sz)$, max $\{ c_1 (|A_{c_1}|^i |A_{c_2}|^n sz) \} + \kappa_3(n) = 42602.72ms$

 cost (PAR_L (FARM_n (FUN (ANA_L A_{c₂})) || (FUN (CATA_L A_{c₁})))) sz $= 27846.13 ms$

 $cost$ (PARL (FARM_n (FUN (HYLOF A_{c1} A_{c₂})))) sz $= 32179.77ms$

Predicted v. Actual Speedup Predicted v. Actual Speedup *n* Workers

Pipe (Farm n_1 Func) (Farm n_2 Func)

(a) Matrix Multiplication

Image Convolution of 500 images on *titanic,* a 2.4GHz 24-core, AMD Opteron 6176 architecture, running Centos Linux 2.6.18-274.e15. Dashed lines are predictions.

Conclusion

- First-ever treatment of parallelism that reflects parallel structure in types
- Several advantages to exposing parallel structure in types
	- clear separation between the structure and the functionality
	- documentation of how a program was parallelized
	- easy to change the parallel structure of a program without modifying the functional behaviour
- Reasoning about costs of different parallel structure is very powerful
	- Automatically find suitable parallel structures
	- Compile-time information about the run-time behaviour
	- Automatically rewrite programs to minimize costs

- Other patterns, e.g. stencil and bulk synchronous parallelism
- More detailed cost models (see e.g. Hammond et al, 2016)
- Dynamic Analysis is also possible
- Allow (certain kinds of) side effects in the workers
- Implement back-ends. Run our structured programs!
- Larger case studies

Paper Available on Request

To appear in ICFP 2016

Farms, Pipes, Streams and Reforestation: Reasoning about Structured Parallel Processes using Types and Hylomorphisms

David Castro, Kevin Hammond, Susmit Sarkar

School of Computer Science, University of St Andrews, St Andrews, Scotland {dc84, kh8, ss265}@st-andrews.ac.uk

Abstract

The increasing importance of parallelism has motivated the creation of better abstractions for writing parallel software, including structured parallelism using nested algorithmic skeletons. Such approaches provide high-level abstractions that avoid common problems, such as race conditions, and often allow strong cost models to be defined. However, choosing a *combination* of algorithmic skeletons that yields good parallel speedups for a program on some consider consider exclusive considers a 4000 sub-radio X- and so to presents a new approach, a type-based mechanism that enables us to reason about the safe introduction of parallelism, while also providing a good abstraction to reason about cost. This mechanism exploits strong program structure in the form of structured parallel processes [3], combined with properties of *hylomorphisms* [22].

Motivating Example 1.1

We introduce our approach using a simple example, *image merge*, which merges pairs of images taken from an input stream. We start

THANK YOU!

http://rephrase-ict.eu

http://paraphrase-ict.eu

@rephrase_eu