
Scope trees, scope graphs, and reference attribute grammars for
name resolution in (domain-specific) languages

... work in progress ...

Luke Bessant , Dawn Michaelson, and Eric Van Wyk

Department of Computer Science & Engineering
University of Minnesota

WG 2.11 Meeting, Delft, April 3-4, 2023

1

Network virtualization, software-defined networks

2

Network virtualization, software-defined networks

� Surprisingly, 5G is not 100% meaningless hype!

2

Network virtualization, software-defined networks

� Surprisingly, 5G is not 100% meaningless hype!

� It is more than just an attempt to sell new phones.

� Networking is not just hardware boxes anymore, much is “software defined.”

� There is a need for dynamic adaptation, easy configuration, security, better
performance, etc.

� Network applications manage the network — security/authentication, traffic
management (dynamic scaling to match traffic demands), etc.

� Interest in private networks in industrial applications.

2

A domain-specific language for network functions

� Networks are just connected independent devices.

� DSL inspired by the actor model

� Actors respond to messages by

� sending more messages
� modifying local state

There is no global shared state.

� The aim

� DSL is a target for program synthesis
� Analysis to provide performance guarantees
� Understand scaling in/out as program transformations

3

A firewall example - message types

message FirewallControl {

bits <2> action;

bits <128> address;

}

message FirewallInfo {

int droppedPackets;

}

/* Built in message types: IPv4 , IPv6 */

4

A firewall example - actor header and state

actor Firewall :

IPv6|FirewallControl ->

Drop: IPv6 ,

Forward: IPv6 ,

Controller: FirewallInfo

{

5

A firewall example - actor header and state

actor Firewall :

IPv6|FirewallControl ->

Drop: IPv6 ,

Forward: IPv6 ,

Controller: FirewallInfo

{

// persistent state held by the actor

state {

// table holds 1 for drop , 0 for send

table <bits <128>, bits <1>> dropTable default 0;

int droppedPackets;

}

5

A firewall example - actor initialization and message dispatch

init () {

droppedPackets = 0;

}

6

A firewall example - actor initialization and message dispatch

init () {

droppedPackets = 0;

}

dispatch (msg) {

match msg with

| IPv6 { _ } -> data(msg);

| FirewallControl { _ } -> control(msg);

}

6

A firewall example - actor actions

// a regular packet

action data (IPv6 msg) {

if (dropTable[msg.srcIP] == 1) {

droppedPackets = droppedPackets + 1;

send msg to Drop;

}

else {

send msg to Forward;

}

}

7

A firewall example - actor actions

// a SDN controller message

action control (FirewallControl msg) {

if (msg.action == 0){ //let this address through

remove msg.address from dropTable;

}

else if (msg.action == 1){ //drop packets from this address

dropTable[msg.address] = 1;

}

else { // controller wants information

send (FirewallInfo {droppedPackets = droppedPackets ;})

to Controller;

}

}

8

Prototyping the DSL
� We want domain user involvement as soon as possible.

� One way to do this is use language-independent formalisms like Eelco’s scope
graphs for
� name resolution in the compiler

� and also for IDE support.

The intent for scope graphs is to be the “BNF” for name resolution.

� Nodes for scopes, name declarations, and references.
Edges indicating scoping structure.
A similar shape to the AST, but limited to information useful for name resolution.

� We did not have an implementation of scope graphs so this was a good excuse to
work on one.

� It is work in progress, but this week is a good time for topics related to Eelco’s
work. 9

Working example

module M {

def a = b + 3

def b = 4 + d

}

import M

def c = a + b

def d = 1
M c d M a b

a b b d

10

Reference/Remote AGs

� à la Görel Hedin and John Boyland

� Syntax trees with extra edges, making them into graphs.

These edges are attributes whose value are references / pointers to remote nodes
somewhere in the syntax tree.

� Often in RAGs this is to create edges from name reference to declarations.

But the resolution is ad-hoc and done on a per-language basis.

11

Abstract Syntax Tree

module M {

def a = b + 3

def b = 4 + d

}

import M

def c = a + b

def d = 1

S

ES

D

M S

ES

D

a +

b 3

ES

D

b +

4 d

.

ES

I

M

ES

D

c +

a b

ES

D

d 1

.

12

Abstract Syntax Tree

module M {

def a = b + 3

def b = 4 + d

}

import M

def c = a + b

def d = 1

S

ES

D

M S

ES

D

a +

b 3

ES

D

b +

4 d

.

ES

I

M

ES

D

c +

a b

ES

D

d 1

.

12

Scope Trees - a RAGs implementation of Visser’s Scope Graphs

� We can overlay a scope graph edges over the AST, but we cannot add the generic
name resolution computations to AST productions.

Thus, resolution would still be ad-hoc and language specific.

13

Scope Trees - a RAGs implementation of Visser’s Scope Graphs

� We can overlay a scope graph edges over the AST, but we cannot add the generic
name resolution computations to AST productions.

Thus, resolution would still be ad-hoc and language specific.

� Instead, a generic scope tree is constructed by the object language specification.

When the reference attributes are evaluated on this tree, it becomes a scope
graph.

� Also create links between the AST nodes and corresponding scope tree nodes.

13

Scope Tree

module M {

def a = b + 3

def b = 4 + d

}

import M

def c = a + b

def d = 1

G

S

Ds

D

M S

Ds

D

a

Ds

D

b

.

Rs

R

b

Rs

R

d

.

Ds

D

c

Ds

D

d

.

Rs

I

M

Rs

R

b

Rs

R

d

.

14

Scope Tree

module M {

def a = b + 3

def b = 4 + d

}

import M

def c = a + b

def d = 1

G

S

Ds

D

M S

Ds

D

a

Ds

D

b

.

Rs

R

b

Rs

R

d

.

Ds

D

c

Ds

D

d

.

Rs

I

M

Rs

R

b

Rs

R

d

.

14

Scope trees as a Silver library

� A work in progress.

� Various ways to create trees and links between the AST and the Scope Tree.

� Working on more applications to flesh out the details.

15

Scope trees as a Silver library

� A work in progress.

� Various ways to create trees and links between the AST and the Scope Tree.

� Working on more applications to flesh out the details.

� Eelco was right - scope graphs are useful things.

15

Thanks

We thank the NSF for supporting this work under award #2123987.

16

