
Yannis Smaragdakis, UMass Amherst 1

Java Library Specialization

The cJ approach

Yannis Smaragdakis
University of Massachusetts, Amherst

(research jointly with Shan Shan Huang, David Zook)

Yannis Smaragdakis, UMass Amherst 2

The Problem

� We want to safely specialize reusable code
collections (e.g., class libraries)
� class List<E> {
<if it is an expandable list>

boolean add(E e) {...}
<end if>
}

� This allows many good things
� static checking of calling unsupported operations
� possible optimization (removing code, special handling)

� Like meta-programming where the generator only has
“if”, but no loops

Yannis Smaragdakis, UMass Amherst 3

Current Approaches

� Java: no static specialization, only runtime checking
� interface List<E> {

public E add(int index, E element)
throws UnsupportedOperationException;

}

� Alternative: manually maintaining an exponential number
of related types
� List, ModifiableList, ExpandableList, ShrinkableList,

ModifiableShrinkableList, ModifiableShrinkableExpandableList, ...

� alternative explicitly rejected in current Java libraries (notably, the
Java Collections Framework)

Yannis Smaragdakis, UMass Amherst 4

Current Approaches

� C/C++: unsafe specialization, once per entire compilation unit!
� template <class E>

class List {
#ifdef Expandable

bool add(const E &e) {...}
#endif
};
class Client {

void meth() {
List<string> ls;
ls.add(“John”);

}
};

� Low-level power:
� can make any code fragment conditional
� code in unsatisfied conditions not even parsed

Yannis Smaragdakis, UMass Amherst 5

Idea #1

� Let’s allow arbitrary propositions a la C but try
to ensure their safety
� #define Prop

� #ifdef Prop { ... } #endif

� #ifndef Prop { ... } #endif

Yannis Smaragdakis, UMass Amherst 6

Safe Ifdefs

� Complexity builds up
� #ifdef A { ... int i; ... } #endif

#ifndef B { ... int i; ... } #endif

� i is defined under the condition “A or not B”
� #ifdef A { #ifdef B

{ ... int i; ... }
#endif } #endif

� i is defined under the condition “A and B”

Yannis Smaragdakis, UMass Amherst 7

Issues with Safe Ifdefs

� In general, can form arbitrary propositional
clauses and may need to check their validity
� NP-hard

� type system needs integration with SAT-solver
� need to consider exponential number of

conditions

� This may be fine, but also language is
artificial and not too expressive
� programmer decides meaning of propositions

Yannis Smaragdakis, UMass Amherst 8

Idea #2: the cJ approach

� Define conditions using expressible type
concepts
� Java used as context for examples

� #ifdef becomes <cond>?
� Can define conditionally fields and entire methods

� code fragments at the statement level also easy to support

Yannis Smaragdakis, UMass Amherst 9

cJ Example

� class C<X> {
X xRef;
...
<X extends DataSource>?
void store() {... xRef.getConnection() ...}

}

� immediate benefit: types maintain the appropriate
conditions
� we know xRef supports getConnection because of the

type condition

Yannis Smaragdakis, UMass Amherst 10

cJ and Java Collections Framework

� Solves conciseness/safety issues of the Java
Collections Framework

interface Collection<E, M> { ...
<M extends VariableSize>?
boolean add(E e);

}
interface List<E, M> extends Collection<E, M> {

...
<M extends Modifiable>?
E set(int index, E element);

}

Yannis Smaragdakis, UMass Amherst 11

Abstraction

� For this to really be general, need abstraction
� Two ways to abstract in OO languages:

� be able to handle all objects that support same
methods, even if they are from different classes
� subtyping via interfaces

� be able to handle all conditional instantiations of a
class that support at least some functionality,
without knowing exactly what
� variance

Yannis Smaragdakis, UMass Amherst 12

Abstraction #1: Interfaces

� class C<X>
{

X xRef;
...
<X extends DataSource>?
void store() {... xRef.getConnection() ...}

}

� This should make you uneasy:
� we conditionally change something that can affect

other conditions
� also, subtyping conditions can be recursive

<X extends DataSource>? implements Storable {

Yannis Smaragdakis, UMass Amherst 13

Example

class C<X> extends D<C<C<X>>> {}

class D<Y> <Y extends E<C<Y>>>? extends E<Y> {}

class E<Z> {}

� consider checking
� C<A> extends E<C<C<A>>>

� this requires
C<C<A>> extends E<C<C<C<A>>>

� this requires
C<C<C<A>>> extends E<C<C<C<C<A>>>>

� ...

Yannis Smaragdakis, UMass Amherst 14

Conditional Subtyping

� One more nudge and we can emulate a Turing
machine in the type system!
� which means our safety check is undecidable
� class Add<X,Y>

<X extends Succ<Z>>? extends Succ<Add<Z,Y>>
{}

� We worked hard to make cJ decidable
� same issue for any kind of specialization mechanism

Yannis Smaragdakis, UMass Amherst 15

Abstraction #2: Variance

� “I want my code to work with all list objects that have
a set method (i.e., are modifiable), regardless of
whether they are expandable, shrinkable, etc.”

� In Java, this kind of abstraction is done with
“variance” or “wildcards”

� cJ supports this, but it opens a new can of worms
List<Dog,? extends Modifiable> modList;

...

modList.set(1, new Dog(“Sparky”)); // OK

modList.add(new Dog(“Spotty”)); // NO!

Yannis Smaragdakis, UMass Amherst 16

Bottom Line

� Safe library specialization is very useful in
practice
� concise expression of many different

combinations

� But not easy to really do and integrate in type
system
� issues of power of conditions, abstraction over

them
� too easy to fall off the deep end

Yannis Smaragdakis, UMass Amherst 17

Mission Statement

� WG 2.11 can play a key role in defining such
mechanisms!
� this is meta-programming at its finest

� modest (only “if”, no “for”) yet still quite hard!
� real need in practice

Yannis Smaragdakis, UMass Amherst 18

Many More Issues

� I concentrated on what is expressible and
checkable

� Ignored several other issues
� negative conditions, disjunctions
� how to compile

� keep all combinations, vs. remove unused code

� conditions used for low-level solutions
� e.g., platform specific code

