Dynamically Extending Syntax and Semantics

S. Doaitse Swierstra and Arthur. |. Baars

Utrecht University
{doaitse,arthur}@cs.uu.nl

January 25, 2006

N

Universiteit Utrecht % &

TN

I

U

Incremental Language Definition and Implementation

... from now on, a main goal in designing a language
should be to plan for growth. The language must start
small, and the language must grow as the set of users

grows.
[Guy Steele]

» small core language

» possibility for growth

N
Universiteit Utrecht ?U]

N

Example: if-then-else

Translation scheme from Haskell Report:
if exp_1 then exp_2 else exp_3
=
case exp_1 of
True — exp_2
False — exp_3

Wiy
Universiteit Utrecht ; &) =

EN

Example: if-then-else

Translation scheme from Haskell Report:
if exp_1 then exp_2 else exp_3
=
case exp_1 of
True — exp_2
False — exp_3
Translation scheme as a syntax macro (using abstract syntax):
nonterminals :
Expr :: Expression

Wiy
Universiteit Utrecht ; &) =

EN

Example: if-then-else

Translation scheme from Haskell Report:
if exp_1 then exp_2 else exp_3
=
case exp_1 of
True — exp_2
False — exp_3
Translation scheme as a syntax macro (using abstract syntax):
nonterminals :
Expr :: Expression

rules :
Expr ::="if" expl = Expr "then" exp2 = Expr
"else" exp3 = Expr
= Case expl
(CaseArms_Cons (CaseArm (Var "True") exp2)
(CaseArms_Cons (CaseArm (Var "False") exp3) RN
CaseArms,Nil)) Universiteit Utrecht :%TS

Example: if-then-else

Translation scheme as a syntax macro using concrete syntax:

nonterminals :
Expr :: Expression
rules :

Expr::="if" expl = Expr "then" exp2 = Expr
"else" exp3 = Expr
= case [| expl || of
True — [| exp2 |]
False — [| exp3 |]
The symbols [, and |] are used to switch between concrete
syntax and abstract syntax.

Wiy
Universiteit Utrecht ; &) =

EN

Thus ...

The function
test x = if x then ’a’ else ’A’
is translated into:
test x = case x of
True — ’a’
False — °A°

Wiy
Universiteit Utrecht ; &) =

EN

Unfortunately

However, for the following erroneous program
test x = if x then ’a’ else "A"

<y

Universiteit Utrecht ? &

N

Unfortunately

However, for the following erroneous program
test x = if x then ’a’ else "A"
this error message is given:

Couldn’t match ‘Char’ against ‘String’
Expected type: Char
Inferred type: String
In a case alternative: False -> "A"
In the case expression:

case x of
True -> ’a’
False -> "A"

RN
Universiteit Utrecht % &) =

EN

Unfortunately

However, for the following erroneous program
test x = if x then ’a’ else "A"
this error message is given:

Couldn’t match ‘Char’ against ‘String’
Expected type: Char
Inferred type: String
In a case alternative: False -> "A"
In the case expression:

case x of
True -> ’a’
False -> "A"

Confusing for a programmer! Messages are given in terms of

transformed programs. Ay

Universiteit Utrecht = b <

EN

This caused by ...

data Expression
| Case expr : Expression
branches : CaseArms
| Val name: String
| Apply fun: Expression arg : Expression

type CaseArms = [CaseArm]|
data CaseArm
| CaseArm pattern : Expression expr : Expression
attr Expression CaseArms CaseArm [V V pretty : PP_Doc]
sem Expression
| Case lhs.pretty = "case" >< @expr.pretty >< "of"

>-< indent 2@branches.pretty
Y

Universiteit Utrecht = b <

EN

Solution: Attribute redefinition

nonterminals :
Expr :: Expression
rules :
Expr::="if" expl = Expr "then" exp2 = Expr
"else" exp3 = Expr
= case [| expl |] of
True — [| exp2 |]
False — [| exp3 |]
{ Ihs.pretty = text "if" >< @expl.pretty
>-< text "then" >< @exp2.pretty
>-< text "else" >< @exp3.pretty

Wiy
Universiteit Utrecht ; &) =

EN

Solution: Attribute redefinition

nonterminals :
Expr :: Expression
rules :

Expr::="if" expl = Expr "then" exp2 = Expr
"else" exp3 = Expr
= case [| expl |] of
True — [| exp2 |]
False — [| exp3 |]

{ Ihs.pretty = text "if" >< @expl.pretty
>-< text "then" >< @exp2.pretty
>-< text "else" >< @exp3.pretty

}

The redefinition only redefines the pretty printing aspect, all other
aspects are left unchanged.
Y

Universiteit Utrecht = b <

EN

Syntax Macros and Attribute redefinitions

» Attribute Grammar

 defines language and semantics
* types, constructors, and attributes

» Syntax Macros

* map new syntax onto the core language
» Attribute redefinitions

» adapt semantic rules

&y

Universiteit Utrecht ; §

Highr-Order Abstract Syntax

Haskell report: List comprehensions satisfy these identities, which
may be used as a translation into the kernel:

le |] = [e]

[e| b, Q] =if bthen [e | Q] else []

[e| p— 1, Q] =letokx = case x of
p—lelQ]
-— 1l

in concatMap ok |
[e | let decls, Q] = let decls in [e | Q]

Wiy
Universiteit Utrecht ; &) =

EN

10

Highr-Order Abstract Syntax

Haskell report: List comprehensions satisfy these identities, which
may be used as a translation into the kernel:

le |] = [e]

[e| b, Q] =if bthen [e | Q] else []

[e| p— 1, Q] =letokx = case x of
p—lelQ]
-— 1l

in concatMap ok |
[e | let decls, Q] = let decls in [e | Q]
Note: the expression e is pushed to the end of the list of qualifiers.

Wiy
Universiteit Utrecht ; &) =

EN

10

The expression:
let as = [1,2]
in[a|a« as, even a|
is to be interpreted as into:
let as = [1,2]
in let .1 =A_2— case _2 of
a —if even a
then [a]
else []
=)

in concatMap _1 as

RN
Universiteit Utrecht % &) =

EN

11

Need for Higher-

Expr
Pattern
Decls
Qualifiers ::

Order Domains

:: Expression
:: Expression
:: Declarations

Expression — Expression

N

Universiteit Utrecht = 8 F

U

Z/\

12

Need for Higher-Order Domains

Expr
Pattern
Decls
Qualifiers

Expr

Qualifiers

Qualifiers

Note that this

:: Expression

:: Expression

:: Declarations

:: Expression — Expression

:=[e = Expr | gs = Qualifiers]
= [lgs|] [l el]
= Ae :: Expr.[€]
n=b= Expr"," gqs = Qualifiers
= Ae :: Expression.if [| b |]
then [| gs [] [| e]
else []
is not concrete syntax, but an expression in a

Haskell-like language that builds an " abstract syntax tree’. g“;’"fé

EN

Universiteit Utrecht

12

Qualifiers ::= p = Pattern "<-" | = Expr "," gs = Qualifiers
ok = Fresh x = Fresh
= Ae :: Expression.

let [| ok |] [| x |] = case [| x |] of
[lpl]HHqSI]HeH

in concatMap [| ok |] [| ']
Qualifiers ::= "1let" decls = Decls "," qs = Qualifiers
= Ae :: Expressionlet || decls |]
in [[ags|][lel]

RN
Universiteit Utrecht % &) =

EN

13

Syntax Macros: Parser Definitions

In order to be able to generate parsers on the fly, we start from
extendible parsers:

>

>

combinator parsers construct parsers on the fly

we have to deal with left recursion, since we cannot require
the user to know about grammars and parsers (see HW 2005
paper)

we need typed indirections to be able to adapt referenced
parsers

we use/need GADT's (our version) to transform parsers in a
type safe way

Wiy
Universiteit Utrecht ; &) =

EN

14

Syntax Macros: Semantic Extensions

In order to be able to change attribute grammars on the fly we use:

» techniques from first-class attribute grammars, based on
extendible records

» again heavy use of GADT's in order to do reflective
programming in a type safe way

» without realising we started of building a typed Haskell
interpreter

» constant dynamic type checking overhead
» attribute grammar combinators build evaluators on the fly
> higher-order domains
N

Universiteit Utrecht = b <

EN

15

Generic Code we generate...

For the interpretation of macros and redefinitions

» meta information about types, constructors, and attributes is
generated from attribute grammar

» basic parsing structures are generated for the context free
parsers

Wiy
Universiteit Utrecht ; &) =

EN

16

Conclusions: The Good News

> it can be done
» we have become extremely good (Haskell programmers/type
hackers)

> we can build a compiler in a number of steps just starting
from a list of non-terminals and the list of attributes

Wiy
Universiteit Utrecht ; &) =

EN

17

Conclusions: The Bad News

> it becomes too difficult

» the type system forces us to program a partial correctness
proof of every step we take

> we have spent too much time finding out how hard this al is

> the approach taken relies on extendible records, which are not
likely to make it into future versions of Haskell

» error messages are between just cryptic and extremely cryptic

» we want to transform attribute grammars into more efficient
representation, and this is prevented by the approach taken

RN
Universiteit Utrecht % &) =

EN

18

Conclusions: How we proceed

» we generate our language descriptions and attribute grammars
out of a DSL, called Ruler

» our grammars easily have over 15 inherited and synthesized
attributes, and quite a few are generated from the Ruler
specification

» this makes the approach taken earlier even more cumbersome

Wiy
Universiteit Utrecht ; &) =

EN

19

Final Conclusions

It is now easier to give a description of the language
extension using Ruler notation and then generate a new
compiler, than to try to get the extensions by extending
the semantics by changing the attribute grammar rules
and parsers at runtime

RN
Universiteit Utrecht ; &) =

EN

20

Final Conclusions

It is now easier to give a description of the language
extension using Ruler notation and then generate a new
compiler, than to try to get the extensions by extending
the semantics by changing the attribute grammar rules
and parsers at runtime

Currently we are working on:

1.
2.

> oW

a plug-in architecture for our attribute grammar system

a Haskell compiler, developed as a sequence of Ruler
descriptions

constraint based type checking and inferencing strategies

. user-scriptable error messages for combinator languages

RN
Universiteit Utrecht % &) =

EN

20

