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Incremental Language Definition and Implementation

. . . from now on, a main goal in designing a language
should be to plan for growth. The language must start
small, and the language must grow as the set of users
grows.

[Guy Steele]

I small core language

I possibility for growth
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Example: if-then-else

Translation scheme from Haskell Report:
if exp 1 then exp 2 else exp 3
⇒

case exp 1 of
True → exp 2
False → exp 3

Translation scheme as a syntax macro (using abstract syntax):
nonterminals :
Expr :: Expression

rules :
Expr ::= "if" exp1 = Expr "then" exp2 = Expr

"else" exp3 = Expr
⇒ Case exp1

(CaseArms Cons (CaseArm (Var "True") exp2 )
(CaseArms Cons (CaseArm (Var "False") exp3 )

CaseArms Nil))
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Example: if-then-else

Translation scheme as a syntax macro using concrete syntax:
nonterminals :
Expr :: Expression
rules :
Expr ::= "if" exp1 = Expr "then" exp2 = Expr

"else" exp3 = Expr
⇒ case [ | exp1 | ] of

True → [ | exp2 | ]
False → [ | exp3 | ]

The symbols [|, and |] are used to switch between concrete
syntax and abstract syntax.
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Thus ...

The function
test x = if x then ’a’ else ’A’

is translated into:
test x = case x of

True → ’a’
False → ’A’
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Unfortunately ....

However, for the following erroneous program
test x = if x then ’a’ else "A"

this error message is given:

Couldn’t match ‘Char’ against ‘String’
Expected type: Char
Inferred type: String

In a case alternative: False -> "A"
In the case expression:

case x of
True -> ’a’
False -> "A"

Confusing for a programmer! Messages are given in terms of
transformed programs.
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This caused by ...

data Expression
| Case expr : Expression

branches : CaseArms
| Val name : String
| Apply fun : Expression arg : Expression
| ...

type CaseArms = [CaseArm ]
data CaseArm
| CaseArm pattern : Expression expr : Expression

attr Expression CaseArms CaseArm [∨∨ pretty : PP Doc ]
sem Expression
| Case lhs .pretty = "case" >< @expr .pretty >< "of"

>-< indent 2@branches .pretty
...
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Solution: Attribute redefinition

nonterminals :
Expr :: Expression
rules :
Expr ::= "if" exp1 = Expr "then" exp2 = Expr

"else" exp3 = Expr
⇒ case [ | exp1 | ] of

True → [ | exp2 | ]
False → [ | exp3 | ]
{ lhs .pretty = text "if" >< @exp1 .pretty

>-< text "then" >< @exp2 .pretty
>-< text "else" >< @exp3 .pretty

}
The redefinition only redefines the pretty printing aspect, all other
aspects are left unchanged.
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Syntax Macros and Attribute redefinitions

I Attribute Grammar
• defines language and semantics
• types, constructors, and attributes

I Syntax Macros
• map new syntax onto the core language

I Attribute redefinitions
• adapt semantic rules
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Highr-Order Abstract Syntax

Haskell report: List comprehensions satisfy these identities, which
may be used as a translation into the kernel:

[e | ] = [e ]
[e | b, Q ] = if b then [e | Q ] else [ ]
[e | p ← l , Q ] = let ok x = case x of

p → [e | Q ]
→ [ ]

in concatMap ok l
[e | let decls , Q ] = let decls in [e | Q ]

Note: the expression e is pushed to the end of the list of qualifiers.
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...

The expression:
let as = [1, 2 ]
in [a | a← as , even a ]

is to be interpreted as into:
let as = [1, 2 ]
in let 1 = λ 2 → case 2 of

a → if even a
then [a ]
else [ ]

→ [ ]
in concatMap 1 as
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Need for Higher-Order Domains

Expr :: Expression
Pattern :: Expression
Decls :: Declarations
Qualifiers :: Expression→ Expression

Expr ::= [e = Expr | qs = Qualifiers ]
⇒ [ | qs | ] [ | e | ]

Qualifiers ::=
⇒ λe :: Expr .[e ]

Qualifiers ::= b = Expr "," qs = Qualifiers
⇒ λe :: Expression.if [ | b | ]

then [ | qs | ] [ | e | ]
else [ ]

Note that this is not concrete syntax, but an expression in a
Haskell-like language that builds an ”abstract syntax tree”.
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...

Qualifiers ::= p = Pattern "<-" l = Expr "," qs = Qualifiers
ok = Fresh x = Fresh

⇒ λe :: Expression.
let [ | ok | ] [ | x | ] = case [ | x | ] of

[ | p | ]→ [ | qs | ] [ | e | ]
→ [ ]

in concatMap [ | ok | ] [ | l | ]
Qualifiers ::= "let" decls = Decls "," qs = Qualifiers

⇒ λe :: Expression.let [ | decls | ]
in [ | qs | ] [ | e | ]
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Syntax Macros: Parser Definitions

In order to be able to generate parsers on the fly, we start from
extendible parsers:

I combinator parsers construct parsers on the fly

I we have to deal with left recursion, since we cannot require
the user to know about grammars and parsers (see HW 2005
paper)

I we need typed indirections to be able to adapt referenced
parsers

I we use/need GADT’s (our version) to transform parsers in a
type safe way



15

Syntax Macros: Semantic Extensions

In order to be able to change attribute grammars on the fly we use:

I techniques from first-class attribute grammars, based on
extendible records

I again heavy use of GADT’s in order to do reflective
programming in a type safe way

I without realising we started of building a typed Haskell
interpreter

I constant dynamic type checking overhead

I attribute grammar combinators build evaluators on the fly

I higher-order domains
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Generic Code we generate...

For the interpretation of macros and redefinitions

I meta information about types, constructors, and attributes is
generated from attribute grammar

I basic parsing structures are generated for the context free
parsers
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Conclusions: The Good News

I it can be done

I we have become extremely good (Haskell programmers/type
hackers)

I we can build a compiler in a number of steps just starting
from a list of non-terminals and the list of attributes
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Conclusions: The Bad News

I it becomes too difficult

I the type system forces us to program a partial correctness
proof of every step we take

I we have spent too much time finding out how hard this al is

I the approach taken relies on extendible records, which are not
likely to make it into future versions of Haskell

I error messages are between just cryptic and extremely cryptic

I we want to transform attribute grammars into more efficient
representation, and this is prevented by the approach taken
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Conclusions: How we proceed

I we generate our language descriptions and attribute grammars
out of a DSL, called Ruler

I our grammars easily have over 15 inherited and synthesized
attributes, and quite a few are generated from the Ruler
specification

I this makes the approach taken earlier even more cumbersome
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Final Conclusions

It is now easier to give a description of the language
extension using Ruler notation and then generate a new
compiler, than to try to get the extensions by extending
the semantics by changing the attribute grammar rules
and parsers at runtime

Currently we are working on:

1. a plug-in architecture for our attribute grammar system

2. a Haskell compiler, developed as a sequence of Ruler
descriptions

3. constraint based type checking and inferencing strategies

4. user-scriptable error messages for combinator languages
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