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What is a task scheduler?

• Places tasks on cores at task fork, wakeup, or load balancing.

• Selects a task on the core to run when the core becomes idle.

• kernel/sched/core.c, kernel/sched/fair.c

We are interested in task placement in this talk.
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How can a task scheduler impact the performance of an application?

• A scheduler has to make decisions.

• Poor decisions can slow tasks down, sometimes in the long term.

• How to understand what the task scheduler is doing?
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Some help available

trace-cmd: Collects ftrace information, including scheduling events.

trace-cmd -e sched -q -o trace.dat ./mycommand

Sample trace:
C1 CompilerThre -166659 [026] 9539.524366: sched_wakeup: C1 CompilerThre:166654 [120] success=1 CPU:062

<idle>-0 [062] 9539.524369: sched_switch: swapper/62:0 [120] R ==> C1 CompilerThre:166654 [120]
C1 CompilerThre -166659 [026] 9539.524369: sched_switch: C1 CompilerThre:166659 [120] S ==> swapper/26:0 [120]

java-166654 [062] 9539.524372: sched_waking: comm=C1 CompilerThre pid=166660 prio=120 target_cpu=028
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Some help available

kernelshark: Graphical front end for trace-cmd data.

Hard to get an overview, of e.g. 128 cores.
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Our target: Large multicore servers

Goals for a trace-visualization tool:

• See activity on all cores at once.

• Produce files that can be shared (pdfs).

• Caveat: Interactivity (e.g., zooming) completely abandoned.
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Our tools

• dat2graph: What is running on each core, at each time.

• running_waiting: How many tasks are running or waiting, at each time.

• Lots of other special-purpose things... (hence DSL potential).

7



Our tools

• dat2graph: What is running on each core, at each time.

• running_waiting: How many tasks are running or waiting, at each time.

• Lots of other special-purpose things... (hence DSL potential).

7



Example of debugging a scheduling problem

NAS benchmark suite: “The NAS Parallel Benchmarks (NPB) are a small set of
programs designed to help evaluate the performance of parallel supercomputers. The
benchmarks are derived from computational fluid dynamics (CFD) applications...”

Our focus:
UA: “Unstructured Adaptive mesh, dynamic and irregular memory access”

• N tasks on N cores.
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UA runtimes

4-socket, 128 core, Intel 6130.
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UA with dat2graph

A fast run (dat2graph --socket-order ua..._5.dat).
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Colored horizontal lines indicate running UA tasks. Colors chosen by pids. 10



UA with dat2graph

A slow run (dat2graph --socket-order ua..._2.dat).
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ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_2 socketorder, duration: 28.388164 seconds
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White gaps indicate idleness. 11



UA with running_waiting

Another perspective on the slow run.
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ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_2_rw
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The height of the green line is the number of running tasks.
The height delta of the red line indicates the number of waiting tasks (overload).
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The fast run revisited

Tasks move around sometimes, for example around 3 seconds:
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ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 socketorder, duration: 22.221348 seconds
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Change of color indicates a context switch. 13



Zooming in

dat2graph --target ua --min 3.147 --max 3.153 ... ua...dat

3.148 3.150 3.152

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.147 socketorder upto_3.153, duration: 3.171653 seconds
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Color by command: understanding the black line

dat2graph --socket-order --min 3.147 --max 3.153 --color-by-command
ua...dat

3.148 3.150 3.152

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 color from_3.147 socketorder upto_3.153 color, duration: 3.171643 seconds
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ua.C.x: 2.5318-3.1530: 7.82 (133, 128 pids)

kworker: 3.1476-3.1517: 0.0002 (2, 2 pids) 0, 109
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Conclusion: Load balancing

UA Pid 12569 gets load balanced from core 0 to core 96 (off socket).
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Another anomaly

UA-UA overload (no black line)
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Running-waiting view
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ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5_rw_from_3.147_upto_3.153
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Understanding the source of the overload

3.13 3.14 3.15

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.123 socketorder upto_3.153, duration: 3.171653 seconds
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• 12655 on core 68 wakes 12549 for core 111 (different sockets)
• CFS first chooses a “target”, between the previous core and the waker core.
• 68 is chosen, due to the recent activity on 111.
• There are no idle cores on the socket of 68, resulting in an overload.
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A patch

diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -5813,6 +5813,9 @@ wake_affine_idle(int this_cpu, int prev_cpu, int sync)

if (sync && cpu_rq(this_cpu)->nr_running == 1)
return this_cpu;

+ if (available_idle_cpu(prev_cpu))
+ return prev_cpu;
+

return nr_cpumask_bits;
}
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Benefit on UA
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Assessment

Multiple kinds of graphs were useful to understand the problem:

• dat2graph: Which task is running, when, on what core?
• dat2graph –color-by command:

Which application is running, when, on what core?
• running_waiting: How many tasks are running and waiting?

More complex options:

• What is the frequency of each core, and what application is currently running at
that frequency?

23



Original implementation
match l with

Parse_line.Sched_switch(fromcmd,frompid,reason,tocmd,topid) ->
(if not !fast_freq && tracking frompid fromcmd requested_pids time firstmatch
then

switchfrom base inkvm index time core frompid fromcmd corestate
freqtrace hoststate pending mapping
startpoint);

(if not !fast_freq && tracking topid tocmd requested_pids time firstmatch
then

switchto inkvm index time core topid tocmd corestate
freqstate freqtrace hoststate pending mapping
first_appearance startpoint);

| Parse_line.Sched_wakeup(cmd,pid,prevcpu,cpu) -> ...
| Parse_line.Sched_wakeup_new(cmd,pid,parent,cpu) -> ...
| Parse_line.Sched_process_exec(cmd,oldcmd,pid,oldpid) ->

(if tracking oldpid oldcmd requested_pids time firstmatch
then (* pid as is before exec *)

switchfrom base inkvm index time core oldpid oldcmd corestate
freqtrace hoststate pending mapping startpoint);

(if !forked
then Hashtbl.add requested_pids pid ()
else pid_transition oldpid cmd pid requested_pids);
if tracking pid cmd requested_pids time firstmatch
then

switchto inkvm index time core pid cmd corestate
freqstate freqtrace hoststate pending mapping
first_appearance startpoint 24



Issues

Code duplication due to similar events:

• sched_switch vs. sched_process_exec
• sched_wakeup vs. sched_wakeup_new

Many data structures:

• Data structures to record the current state.
• Data structures to collect historical traces.

Difficult to customize for specific purposes.
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Towards a DSL...
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Initial steps

Libraries

• Shared parser, shared graph printer.
• Shared utilities.

To use the libraries

• Copy-pasteable typical implementation
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A small insight

Mostly, we care about task states, not about state transitions

running
��

vv �� ))
waiting

66

-- pendingmm

__

sleepingmmii

Handlers for entering or leaving a state.
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Simplified dat2graph

let ops = Hashtbl.create 7

let init_ops running_trace =

let starting time core pid = do_open running_trace time core pid in

let ending time core pid = do_close running_trace time core pid in

Hashtbl.add ops (MR.Src MR.Running) ending;
Hashtbl.add ops (MR.Dst MR.Running) starting
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Simplified overload counter
let ovd_ops = Hashtbl.create 7

let overload_init_ops overload (_,(_,wait),_) =
let find trace core = try Hashtbl.find trace core with _ -> [] in

let starting time core pid =
let hostcore = Array.get mapping core in
let n =

match find overload hostcore with
Open(t1,v) :: _ -> v

| _ -> List.length (Array.get wait core) - 1 in
do_close overload time hostcore n;
do_open overload time hostcore (n+1) in

let ending time core pid =
let hostcore = Array.get mapping core in
let n =

match find overload hostcore with
Open(t1,v) :: _ -> v

| _ -> List.length (Array.get wait core) + 1 in
do_close overload time hostcore n;
do_open overload time hostcore (n-1) in

Hashtbl.add ovd_ops (MR.Src MR.Waiting) ending;
Hashtbl.add ovd_ops (MR.Dst MR.Waiting) starting

30



An idea for a DSL

Edge on --exec {
pid in running -> color(pid) @ pid.core

}

Edge on --color-by-commmand {
pid in running -> color(pid.cmd) @ pid.core

}

Edge on --sockets {
pid in running -> target(pid.cmd) -> color(socket(pid.core)) @ pid

}

Edge on --mfreq {
pid in running ->

print in "arch_scale_freq_tick: freq %d" ->
pid.core = print.core ->
color(print.$1) @ print.core @ 0

pid in running -> color(pid) @ pid.core @ 1
}
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Questions

How to find a syntax for such a DSL?

• Sufficiently expressive?

• Sufficiently user friendly?

How to increase expressivity?

• Reflection on events or internal data structures?

• Reflection on the underlying programming language?
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Conclusion

• Understanding scheduler traces can be important to
understanding application performance.

• Existing solutions are rigid and processing trace data is complex.

• Maybe a DSL can help...

https://gitlab.inria.fr/schedgraph/schedgraph.git
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An idea for a DSL

Line on --overload {
pid in running v pid in waiting ->

red @ sizeof(running) + sizeof(waiting) @ 0
pid in waiting -> green @ sizeof(waiting) @ 1
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