
Graphing Tools for Tracing Task Schedulers:
The Quest for a DSL

Julia Lawall, Inria
April 5, 2023

1

What is a task scheduler?

• Places tasks on cores at task fork, wakeup, or load balancing.

• Selects a task on the core to run when the core becomes idle.

• kernel/sched/core.c, kernel/sched/fair.c

We are interested in task placement in this talk.

2

What is a task scheduler?

• Places tasks on cores at task fork, wakeup, or load balancing.

• Selects a task on the core to run when the core becomes idle.

• kernel/sched/core.c, kernel/sched/fair.c

We are interested in task placement in this talk.

2

How can a task scheduler impact the performance of an application?

• A scheduler has to make decisions.

• Poor decisions can slow tasks down, sometimes in the long term.

• How to understand what the task scheduler is doing?

3

How can a task scheduler impact the performance of an application?

• A scheduler has to make decisions.

• Poor decisions can slow tasks down, sometimes in the long term.

• How to understand what the task scheduler is doing?

3

Some help available

trace-cmd: Collects ftrace information, including scheduling events.

trace-cmd -e sched -q -o trace.dat ./mycommand

Sample trace:
C1 CompilerThre -166659 [026] 9539.524366: sched_wakeup: C1 CompilerThre:166654 [120] success=1 CPU:062

<idle>-0 [062] 9539.524369: sched_switch: swapper/62:0 [120] R ==> C1 CompilerThre:166654 [120]
C1 CompilerThre -166659 [026] 9539.524369: sched_switch: C1 CompilerThre:166659 [120] S ==> swapper/26:0 [120]

java-166654 [062] 9539.524372: sched_waking: comm=C1 CompilerThre pid=166660 prio=120 target_cpu=028

4

Some help available

kernelshark: Graphical front end for trace-cmd data.

Hard to get an overview, of e.g. 128 cores.
5

Our target: Large multicore servers

Goals for a trace-visualization tool:

• See activity on all cores at once.

• Produce files that can be shared (pdfs).

• Caveat: Interactivity (e.g., zooming) completely abandoned.

6

Our tools

• dat2graph: What is running on each core, at each time.

• running_waiting: How many tasks are running or waiting, at each time.

• Lots of other special-purpose things... (hence DSL potential).

7

Our tools

• dat2graph: What is running on each core, at each time.

• running_waiting: How many tasks are running or waiting, at each time.

• Lots of other special-purpose things... (hence DSL potential).

7

Example of debugging a scheduling problem

NAS benchmark suite: “The NAS Parallel Benchmarks (NPB) are a small set of
programs designed to help evaluate the performance of parallel supercomputers. The
benchmarks are derived from computational fluid dynamics (CFD) applications...”

Our focus:
UA: “Unstructured Adaptive mesh, dynamic and irregular memory access”

• N tasks on N cores.

8

UA runtimes

4-socket, 128 core, Intel 6130.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

runs (sorted by increasing runtime)

se
co

nd
s

Why so much variation?

9

UA runtimes

4-socket, 128 core, Intel 6130.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

runs (sorted by increasing runtime)

se
co

nd
s

Why so much variation?
9

UA with dat2graph

A fast run (dat2graph --socket-order ua..._5.dat).

0 5 10 15 20 25

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 socketorder, duration: 22.221348 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

Colored horizontal lines indicate running UA tasks. Colors chosen by pids. 10

UA with dat2graph

A slow run (dat2graph --socket-order ua..._2.dat).

0 5 10 15 20 25

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_2 socketorder, duration: 28.388164 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

White gaps indicate idleness. 11

UA with running_waiting

Another perspective on the slow run.

0 5 10 15 20 25

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_2_rw

0

50

100

n
u

m
b

er
 o

f
th

re
a

d
s

all threads

running threads

The height of the green line is the number of running tasks.
The height delta of the red line indicates the number of waiting tasks (overload).

12

The fast run revisited

Tasks move around sometimes, for example around 3 seconds:

0 5 10 15 20 25

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 socketorder, duration: 22.221348 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

Change of color indicates a context switch. 13

Zooming in

dat2graph --target ua --min 3.147 --max 3.153 ... ua...dat

3.148 3.150 3.152

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.147 socketorder upto_3.153, duration: 3.171653 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

14

Zooming in

dat2graph --target ua --min 3.147 --max 3.153 ... ua...dat

3.148 3.150 3.152
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.147 socketorder upto_3.153, duration: 3.171653 seconds

0

50

100

co
re

 (s
oc

ke
t o

rd
er

)

15

Color by command: understanding the black line

dat2graph --socket-order --min 3.147 --max 3.153 --color-by-command
ua...dat

3.148 3.150 3.152

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 color from_3.147 socketorder upto_3.153 color, duration: 3.171643 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

ua.C.x: 2.5318-3.1530: 7.82 (133, 128 pids)

kworker: 3.1476-3.1517: 0.0002 (2, 2 pids) 0, 109

16

Conclusion: Load balancing

UA Pid 12569 gets load balanced from core 0 to core 96 (off socket).

3.148 3.150 3.152
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.147 socketorder upto_3.153, duration: 3.171653 seconds

0

50

100

co
re

 (s
oc

ke
t o

rd
er

)

17

Another anomaly

UA-UA overload (no black line)

3.148 3.150 3.152
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.147 socketorder upto_3.153, duration: 3.171653 seconds

0

50

100

co
re

 (s
oc

ke
t o

rd
er

)

18

Running-waiting view

3.148 3.150 3.152

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5_rw_from_3.147_upto_3.153

0

50

100

n
u

m
b

er
 o

f
th

re
a

d
s

all threads

running threads

19

Understanding the source of the overload

3.13 3.14 3.15

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.123 socketorder upto_3.153, duration: 3.171653 seconds

68

111

co
re

 (
so

ck
et

 o
rd

er
)

• 12655 on core 68 wakes 12549 for core 111 (different sockets)
• CFS first chooses a “target”, between the previous core and the waker core.
• 68 is chosen, due to the recent activity on 111.
• There are no idle cores on the socket of 68, resulting in an overload.

20

A patch

diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -5813,6 +5813,9 @@ wake_affine_idle(int this_cpu, int prev_cpu, int sync)

if (sync && cpu_rq(this_cpu)->nr_running == 1)
return this_cpu;

+ if (available_idle_cpu(prev_cpu))
+ return prev_cpu;
+

return nr_cpumask_bits;
}

21

Benefit on UA

1 2 3 4 5 6 7 8 9 10
0

10

20

30

runs (sorted by increasing runtime)

se
co

nd
s

before
after

22

Assessment

Multiple kinds of graphs were useful to understand the problem:

• dat2graph: Which task is running, when, on what core?
• dat2graph –color-by command:

Which application is running, when, on what core?
• running_waiting: How many tasks are running and waiting?

More complex options:

• What is the frequency of each core, and what application is currently running at
that frequency?

23

Original implementation
match l with

Parse_line.Sched_switch(fromcmd,frompid,reason,tocmd,topid) ->
(if not !fast_freq && tracking frompid fromcmd requested_pids time firstmatch
then

switchfrom base inkvm index time core frompid fromcmd corestate
freqtrace hoststate pending mapping
startpoint);

(if not !fast_freq && tracking topid tocmd requested_pids time firstmatch
then

switchto inkvm index time core topid tocmd corestate
freqstate freqtrace hoststate pending mapping
first_appearance startpoint);

| Parse_line.Sched_wakeup(cmd,pid,prevcpu,cpu) -> ...
| Parse_line.Sched_wakeup_new(cmd,pid,parent,cpu) -> ...
| Parse_line.Sched_process_exec(cmd,oldcmd,pid,oldpid) ->

(if tracking oldpid oldcmd requested_pids time firstmatch
then (* pid as is before exec *)

switchfrom base inkvm index time core oldpid oldcmd corestate
freqtrace hoststate pending mapping startpoint);

(if !forked
then Hashtbl.add requested_pids pid ()
else pid_transition oldpid cmd pid requested_pids);
if tracking pid cmd requested_pids time firstmatch
then

switchto inkvm index time core pid cmd corestate
freqstate freqtrace hoststate pending mapping
first_appearance startpoint 24

Issues

Code duplication due to similar events:

• sched_switch vs. sched_process_exec
• sched_wakeup vs. sched_wakeup_new

Many data structures:

• Data structures to record the current state.
• Data structures to collect historical traces.

Difficult to customize for specific purposes.

25

Issues

Code duplication due to similar events:

• sched_switch vs. sched_process_exec
• sched_wakeup vs. sched_wakeup_new

Many data structures:

• Data structures to record the current state.
• Data structures to collect historical traces.

Difficult to customize for specific purposes.

25

Issues

Code duplication due to similar events:

• sched_switch vs. sched_process_exec
• sched_wakeup vs. sched_wakeup_new

Many data structures:

• Data structures to record the current state.
• Data structures to collect historical traces.

Difficult to customize for specific purposes.

25

Towards a DSL...

26

Initial steps

Libraries

• Shared parser, shared graph printer.
• Shared utilities.

To use the libraries

• Copy-pasteable typical implementation

27

Initial steps

Libraries

• Shared parser, shared graph printer.
• Shared utilities.

To use the libraries

• Copy-pasteable typical implementation

27

A small insight

Mostly, we care about task states, not about state transitions

running
��

vv ��))
waiting

66

-- pendingmm

__

sleepingmmii

Handlers for entering or leaving a state.

28

Simplified dat2graph

let ops = Hashtbl.create 7

let init_ops running_trace =

let starting time core pid = do_open running_trace time core pid in

let ending time core pid = do_close running_trace time core pid in

Hashtbl.add ops (MR.Src MR.Running) ending;
Hashtbl.add ops (MR.Dst MR.Running) starting

29

Simplified overload counter
let ovd_ops = Hashtbl.create 7

let overload_init_ops overload (_,(_,wait),_) =
let find trace core = try Hashtbl.find trace core with _ -> [] in

let starting time core pid =
let hostcore = Array.get mapping core in
let n =

match find overload hostcore with
Open(t1,v) :: _ -> v

| _ -> List.length (Array.get wait core) - 1 in
do_close overload time hostcore n;
do_open overload time hostcore (n+1) in

let ending time core pid =
let hostcore = Array.get mapping core in
let n =

match find overload hostcore with
Open(t1,v) :: _ -> v

| _ -> List.length (Array.get wait core) + 1 in
do_close overload time hostcore n;
do_open overload time hostcore (n-1) in

Hashtbl.add ovd_ops (MR.Src MR.Waiting) ending;
Hashtbl.add ovd_ops (MR.Dst MR.Waiting) starting

30

An idea for a DSL

Edge on --exec {
pid in running -> color(pid) @ pid.core

}

Edge on --color-by-commmand {
pid in running -> color(pid.cmd) @ pid.core

}

Edge on --sockets {
pid in running -> target(pid.cmd) -> color(socket(pid.core)) @ pid

}

Edge on --mfreq {
pid in running ->

print in "arch_scale_freq_tick: freq %d" ->
pid.core = print.core ->
color(print.$1) @ print.core @ 0

pid in running -> color(pid) @ pid.core @ 1
}

31

Questions

How to find a syntax for such a DSL?

• Sufficiently expressive?

• Sufficiently user friendly?

How to increase expressivity?

• Reflection on events or internal data structures?

• Reflection on the underlying programming language?

32

Conclusion

• Understanding scheduler traces can be important to
understanding application performance.

• Existing solutions are rigid and processing trace data is complex.

• Maybe a DSL can help...

https://gitlab.inria.fr/schedgraph/schedgraph.git

33

Conclusion

• Understanding scheduler traces can be important to
understanding application performance.

• Existing solutions are rigid and processing trace data is complex.

• Maybe a DSL can help...

https://gitlab.inria.fr/schedgraph/schedgraph.git

33

An idea for a DSL

Line on --overload {
pid in running v pid in waiting ->

red @ sizeof(running) + sizeof(waiting) @ 0
pid in waiting -> green @ sizeof(waiting) @ 1

34

