UNIVERSITY OF

OXFORD

Breadth-First Traversal Via Staging

Jeremy Gibbons
WG2.11#22, April 2023

1. Applicative functors

class Functor f) Applicative f where
unit :: f -- “skip”
~fa¥fb¥f ab -- “sequential composition”

with appropriate laws (“strong lax-monoidal”).

e every monad is applicative
e colists are applicative, under zipping

e constant functors over a monoid are applicative

Applicative traversal

class Functor t) Traversable t where
traverse :: Applicativef) a¥fb ¥talf tb

with laws (naturality, linearity, unitarity).

Eg left-to-right traversal of (finite) lists:

iInstance Traversable List where
traverse f pure
traverse f Xx:xs fmap uncurry : f x traversef xs

Trees

data Tree a Node a Forest a
type Forest a Tree a

€g
t: Treeint e 0 G
t Node3 Nodel Nodel e
' Node 5
; Node 4 Node 9 9 @
; Node 2 9

Depth-first traversal

Instance Traversable Tree where
traverseTree f Node X ts fmap uncurry Node f x traverseF f ts
where traverseF f traverse st traversertree T

e mutual recursion between traverse (trees) and traverseF (forests)
e similar in principle to left-to-right list traversal

e In fact, the outermost traverse in traverseF is that list traversal

e formulaic: can be derived from the datatype definition

e but what about breadth-first traversal?

Ask me later about. ..

e breadth-first enumeration using a queue

one-pass, but non-compositional; how to preserve tree shape?

e breadth-first traversal via shape and contents

compositional, but multi-pass

e breadth-first relabelling as a circular program

compositional, one-pass, but needs laziness

2. Repmin

Replace every element of a tree with the minimum element in that tree:

repmin:: TreeInt ¥ Tree Int

repomint replaceT t minT t where
minT :: Tree Int ¥ Int
minT Node X X
minT Node x ts min x minF ts

minF :: Forest Int ¥ Int
minF minimum map minT

replaceT ::Treea ¥ b ¥ Treeb D—1)—)
replaceT Nodexts y Nodey replaceF tsy \v\@
replaceF ::Foresta ¥ b ¥ Forest b

replaceF tsy replaceT tyjt ts

but do so in a single pass rather than two.

BF

Richard Bird’s circular program

repminggg :: Tree Int ¥ Tree Int
repmingsg t let u;m auxT tminu --circular!
where
auxT ::Treeint ¥ a ¥ Tree a;Int
auxT Node x y Nodey ;X
auxT Nodexts y Node y us; min x z
where us;z auxF tsy

auxF ::ForestInt ¥ a ¥ Forest a;Int -- non-empty forest
auxkF tsy us; minimum ys
where us;ys unzip auxT tyjt ts

(the let must be a letrec).

BF

Alberto Pettorossi’s higher-order program

repminapp :: Tree Int ¥ Tree Int
repminappt let u;m auxT tinum -- not circular

where
auxT ::TreeInt ¥ a ¥ Tree a;Int
auxT Node x y T Nodey ;X
auxT Node x ts y " Nodey usy ;minxz
where us;z auxF ts
auxF ::ForestInt ¥ a ¥ Forest a;Int -- non-empty forest
auxF ts y I map $y us;minimum ys

where us;ys unzip auxT tjt ts

(the let need not be a letrec).

3. Fusing traversals

For traversal bodiesf : A ¥ FBandg: A ¥ F C, hope that:
traversef t traversegt fmap unzip traverse x ¥ fx gx t

Cannot hold in general, because different interleavings of effects.
Interleaving irrelevant for commutative F. But that’s very restrictive.

Also irrelevant if f-effects commute with g-effects, even for non-commutative F:

fx gy fmaptwist gy fx

In particular, whenever f-effects and g-effects occur in distinct phases of a
two-phase computation: “do X now; do Y later” vs “do Y later; do X now”.

Day convolution

data Day f g a where
Day: ab ¥c ¥TfalgblDayfgc

e Day f xsys with xs:: F A;ys :: G B represents a two-phase computation
e Subcomputation xs in phase one, generating effects in F
e subcomputation ys in phase two, generating effects in G
e package up with a function to combine the results (“co-Yoneda trick”)

e Day F G is applicative when F; G are

Injecting and projecting

Two ways to inject a computation, one for each phase:

phasel:. Applicative f; Applicativeg) fa ¥ Dayf ga
phasel xs Day unitr xs unit

phase2 .. Applicative f; Applicativeg) ga ¥ Day f ga

phase2 xs Day unitl unit xs
Computations in different phases commute:

phasel xs phase2ys fmap twist phase2ys phasel xs
Collapse two phases into one, if they share the same class of effects:

runDay :: Applicativef) Dayffa ¥ f a
runDay Day f Xsys fmap f Xxs ys

Greeting In pieces

For example, we can send a two-part greeting in separate phases:

i runDay phasel putStr ""Hello " 1 phase2 putStr "World"
Hello World

It doesn’t matter if we specify those two phases in the opposite order:

i runDay phase2 putStr "World"™ 1 phasel putStr ""Hello ™
Hello World

We can even interleave the specification of fragments from different phases:

i runDay phasel putStr ""Hel"™ 1
phase2 putStr "World"™ 1
phasel putStr ""lo "

Hello World

4. Repmin in two phases

Core of repmin:
repominAux :: Tree Int ¥ Day Writer MiniInt Reader MiniInt Tree Int

Ask me later about:
e Writer and Reader monads
e Min monoid
e each phase of repmin is an instance of traverse

e the traversals fuse

Repmin, RSB-style

Extract the writer and reader components in parallel:

parWR ::Day Writers Readers a ! a
parWR Day f xsys let X;s ;y runWriter xs; runReader ys s
Inf X,y

Circular, so let must have letrec semantics. In particular,

repminWRggg :: Tree Int ¥ Tree Int
repminWRgsg t parWR repminAux t

is Bird’s circular, lazy solution to the repmin problem.

Repmin, ADP-style

Conversely, extract writer then reader components sequentially:

segWR ::Day Writers Readers a Y a
segWR Day f xsys let X;s runWriter xs
y runReader ys s
inf X,y

Now no circularity, so plain non-recursive let suffices. In particular,

repminWRpp i Tree Int ¥ Tree Int
repminWR,pp t segWR repminAux t

IS Pettorossi’s non-circular, higher-order solution to the repmin problem.

Lazily, clearly parWR seqWR. Hence also repminWRgsg repminWRapp.

5. Multiple phases

Generalize from two to multiple phases:

data Phases f a where
Pure::a 1 Phases f a
Link : a;b ¥ c Y¥fal Phasesf b Y Phasesf c

e Pure produces a chain with no effectful phases

e Link adds one more effectful phase to the chain

e homogeneous iteration of Day convolution

e cf lists as homogeneous iteration of pairing

e single initial value; each link adds combining function, collection of values

e eg Linkf xs Linkgys Purez :PhasesF E where

z . Aj)ys::FB;g:: B A "C;xs:FD;f: D;C Y E

Free applicatives

Phases F is the free applicative on functor F, using concatenation:

iInstance Functor f) Applicative Phases f where
unit Pure
Pure x vys fmap X; vys
Link f xsys zs Link X;y;z ¥ f X;y;zZ Xs ys zs

But concatenation is not what we want.

When F is itself applicative and not just a functor, we can (long) zip:

Instance Applicative f) Applicative Phases f where -- different instance!
unit Pure
Pure x vys fmap X; Vs
Xs Purey fmap ;y xs

Link f xsys Linkgzsws Link crossfg exch4 xs zs ys Wws

Two phases, more or less

By design, Phases f generalizes Day f f. Hence injection:

Inject :: Applicativef) Day f f a ¥ Phases f a
Inject Day f Xsys Link f xs Link unitr ys Pure

Analogous to phasel and phase2, embed into an arbitrary phase:

phase :: Applicativef) Int ¥ f a ¥ Phasesf a
phase 1l now

phasei later phase i 1
where
now :: Applicativef) f a ¥ Phasesf a -- embed at phase one

now XS Link unitr xs Pure

later ;. Applicative f) Phasesf a ¥ Phases f a -- shift everything one phase later
later xs Link unitl unit xs

Sorting leaves of a tree in one pass

sortTree::Orda) Treea ¥ Tree a
sortTreet evalState runPhases sortTreeAux t

sortTreeAux ::Ord a) Treea Y Phases State a Treea

sortTreeAuxt phasel traverse pusht 1 --push::a ¥ State a
phase 2 modify sort 1
phase 3 traverse x Y pop t --pop:: ¥ State a a

e commute phases, to bring the two traversals together
e traversal commutes with staging

e consecutive traversals in different phases fuse

sortTreeAuxt phase2 modify sort 1
traverse x ¥ phasel pushx 1phase3pop t

Breadth-first traversal in stages

bft .. Applicativef) a ¥ fb ¥ Treea ¥ f Treeb
bft f runPhases DbftAux f

bftAux :: Applicativef) a ¥ fb ¥ Treea ¥ Phasesf Treeb
bftAux f Node x ts fmap uncurry Node now f x later traverse bftAuxf ts

cf depth-first, obtained by deleting staging annotations:

dft :: Applicativef) a ¥ fb ¥ Treea Y f Treeb
dft f Node x ts fmap uncurry Node f x traverse dftf ts

In particular, bf relabelling, needing neither queues nor cyclicity/laziness:

bfl :Treea ® b ¥ Treeb
bfl t xs evalState bft x ¥ pop t Xxs

6. Conclusion

e Day convolution: natural monoidal structure underlying applicative functors
e multi-stage computation as iterated Day convolution

e same datatype as free applicatives, but different applicative instance

e unifying Bird’s and Pettorossi’s repmin solutions

e breadth-first traversal without shape/contents or laziness/circularity

e joint work with Oisin Kidney, Tom Schrijvers, Nick Wu
e paper at MPC 2022 (LNCS 13544, doi 10.1007/978-3-031-16912-0 1)
e dedicated to Richard Bird

e http://www.cs.ox.ac.uk/jeremy.gibbons/

Extra slides

/. Queues

bfg:: Treea ' a

bfgt bfgAux t where
bfgAux Node x ts: ¢ X:bfgAux g ts
bfgAux

Straightforward for enumeration, but what about traversal?

Anyway, it’'s non-compositional. (More of an unfold than a fold...)

Shape and contents

shape: Treea ¥ Tree
shape fmap const

and

levels :: Tree a 1 a
levels Node x ts X :levelsF ts

levelsF ::Foresta ' a
levelskF foldr Izw map levels -- “long zip with”

so bf concat levels. But now compositional.

Relabelling

relabel :: Tree ; a ! Treea;, a -- given appropriate list of lists. ..
relabel Node ts; X:XS :Xss let us;yss relabelF ts;Xxss
In Node X us; Xs :yss

relabelF :: Forest ; a I Foresta;, a
relabelF ' XSS ' XSS
relabelF t:ts;xss let u;yss relabel t;xss

us; Zss relabelF ts;yss
INn U :us;zss

— In some sense, the inverse of the split into shape and contents. So

bftSC :: Applicativef) a ¥ fb ¥ Treea Y f Treeb
bftSCft fmap combine shapet traverse traversef levelst
where combine u xss fst relabel u;xss

BF

Circular programs

Need not have the contents conveniently partitioned.
Instead, partition it on the fly:

bflabel :: Tree I a ! Treea

bflabel t xs let u;xss relabel t:xs:xss Inu
(Due to Geraint Jones.)
Note that this let must be a letrec; the program is circular.
Hence another definition of breadth-first traversal.

It’s circular. So seems like it needs laziness?

But it’s still a bit clunky to have to separate into shape and contents.

27

8. Repmin in two phases

Writer:

runWriter ::Writerwa @ a,w
tell :: Monoid w) Writer w

and reader:

runReader :Readerra ! r ¢ a
ask :Reader rr

and minimum as a monoid over Int:

Min :Int ¥ Min Int
getMin:: Min Int ¥ Int

We work in the Day convolution Day Writer Min Int

Reader

Min Int

BF

Core of repmin

repminAux ;. Tree Int ¥ Day Writer Min Int

29

Reader Min Int Tree Int

repominAuxt phasel minAuxt 1 phase2 replaceAuxt

where

MIiNnAuUX - Tree Int ¥ Writer Min Int
minAux traverse x ¥ tellMin x
tellIMin :: Int ¥ Wint

tellMin x tell Min x

replaceAux :: Tree Int ¥ Reader Min Int
replaceAux traverse x ¥ askMin
askMin :: RInt Int

askMin fmap getMin ask

Tree

Tree Int

-- write each element in turn

-- replacement for each element

Fusion

repminAux t
specification

phasel traverse x ¥ tellMinx t 1phase2 traverse x ¥ askMin t
naturality in applicative functor

traverse x ¥ phasel tellMinx t 1traverse x ¥ phase2 askMin t
fusion of traversals

traverse x ¥ phasel tellMin x 1 phase2 askMin

—a one-pass traversal, generating a two-phase computation for later execution.

