
Breadth-First Traversal Via Staging

Jeremy Gibbons

WG2.11#22, April 2023

BF 2

1. Applicative functors

class Functor f) Applicative f where

unit :: f �� -- “skip”

�
� :: f a ! f b ! f �a;b� -- “sequential composition”

with appropriate laws (“strong lax-monoidal”).

• every monad is applicative

• colists are applicative, under zipping

• constant functors over a monoid are applicative

BF 3

Applicative traversal

class Functor t) Traversable t where

traverse :: Applicative f) �a ! f b�! t a ! f �t b�

with laws (naturality, linearity, unitarity).

Eg left-to-right traversal of (finite) lists:

instance Traversable List where

traverse f � � � pure � �
traverse f �x : xs� � fmap �uncurry �:�� �f x
 traverse f xs�

BF 4

Trees

data Tree a � Node a �Forest a�
type Forest a � �Tree a�

eg

t :: Tree Int

t � Node 3 �Node 1 �Node 1 � �
;Node 5 � ��

;Node 4 �Node 9 � �
;Node 2 � ���

3 1

4

1

5

9

2

BF 5

Depth-first traversal

instance Traversable Tree where

traverseTree f �Node x ts� � fmap �uncurry Node� �f x
 traverseF f ts�
where traverseF f � traverseList �traverseTree f �

• mutual recursion between traverse (trees) and traverseF (forests)

• similar in principle to left-to-right list traversal

• in fact, the outermost traverse in traverseF is that list traversal

• formulaic: can be derived from the datatype definition

• but what about breadth-first traversal?

BF 6

Ask me later about. . .

• breadth-first enumeration using a queue

one-pass, but non-compositional; how to preserve tree shape?

• breadth-first traversal via shape and contents

compositional, but multi-pass

• breadth-first relabelling as a circular program

compositional, one-pass, but needs laziness

BF 7

2. Repmin

Replace every element of a tree with the minimum element in that tree:

repmin :: Tree Int ! Tree Int
repmin t � replaceT t �minT t� where

minT :: Tree Int ! Int
minT �Node x � �� � x
minT �Node x ts� �min x �minF ts�

minF :: Forest Int ! Int
minF �minimum �map minT

replaceT :: Tree a ! b ! Tree b
replaceT �Node x ts� y � Node y �replaceF ts y�

replaceF :: Forest a ! b ! Forest b
replaceF ts y � �replaceT t y j t ts�

but do so in a single pass rather than two.

3 1

4

1

5

9

2
#

1 1

1

1

1

1

1

BF 8

Richard Bird’s circular program

repminRSB :: Tree Int ! Tree Int

repminRSB t � let �u;m� � auxT t m in u -- circular!

where

auxT :: Tree Int ! a ! �Tree a; Int�
auxT �Node x � �� y � �Node y � �; x�
auxT �Node x ts� y � �Node y us;min x z�

where �us; z� � auxF ts y

auxF :: Forest Int ! a ! �Forest a; Int� -- non-empty forest

auxF ts y � �us;minimum ys�
where �us;ys� � unzip �auxT t y j t ts�

(the let must be a letrec).

BF 9

Alberto Pettorossi’s higher-order program

repminADP :: Tree Int ! Tree Int

repminADP t � let �u;m� � auxT t in u m -- not circular

where

auxT :: Tree Int ! �a ! Tree a; Int�
auxT �Node x � �� � ��y ! Node y � �; x�
auxT �Node x ts� � ��y ! Node y �us y�;min x z�

where �us; z� � auxF ts

auxF :: Forest Int ! �a ! Forest a; Int� -- non-empty forest

auxF ts � ��y !map �$y� us;minimum ys�
where �us;ys� � unzip �auxT t j t ts�

(the let need not be a letrec).

BF 10

3. Fusing traversals

For traversal bodies f :: A! F B and g :: A! F C, hope that:

traverse f t
 traverse g t � fmap unzip �traverse ��x ! f x
 g x� t�

Cannot hold in general, because different interleavings of effects.

Interleaving irrelevant for commutative F . But that’s very restrictive.

Also irrelevant if f -effects commute with g-effects, even for non-commutative F :

f x
 g y � fmap twist �g y
 f x�

In particular, whenever f -effects and g-effects occur in distinct phases of a
two-phase computation: “do X now; do Y later” vs “do Y later; do X now”.

BF 11

Day convolution

data Day f g a where

Day :: ��a;b�! c�! f a ! g b ! Day f g c

• Day f xs ys with xs :: F A;ys :: G B represents a two-phase computation

• subcomputation xs in phase one, generating effects in F

• subcomputation ys in phase two, generating effects in G

• package up with a function to combine the results (“co-Yoneda trick”)

• Day F G is applicative when F ;G are

BF 12

Injecting and projecting

Two ways to inject a computation, one for each phase:

phase1 :: �Applicative f ;Applicative g�) f a ! Day f g a

phase1 xs � Day unitr xs unit

phase2 :: �Applicative f ;Applicative g�) g a ! Day f g a

phase2 xs � Day unitl unit xs

Computations in different phases commute:

phase1 xs
 phase2 ys � fmap twist �phase2 ys
 phase1 xs�

Collapse two phases into one, if they share the same class of effects:

runDay :: Applicative f) Day f f a ! f a

runDay �Day f xs ys� � fmap f �xs
 ys�

BF 13

Greeting in pieces

For example, we can send a two-part greeting in separate phases:

iii runDay �phase1 �putStr "Hello "��i phase2 �putStr "World"��
Hello World

It doesn’t matter if we specify those two phases in the opposite order:

iii runDay �phase2 �putStr "World"��i phase1 �putStr "Hello "��
Hello World

We can even interleave the specification of fragments from different phases:

iii runDay �phase1 �putStr "Hel"��i
phase2 �putStr "World"��i
phase1 �putStr "lo "��

Hello World

BF 14

4. Repmin in two phases

Core of repmin:

repminAux :: Tree Int ! Day �Writer �Min Int�� �Reader �Min Int�� �Tree Int�

Ask me later about:

• Writer and Reader monads

• Min monoid

• each phase of repmin is an instance of traverse

• the traversals fuse

BF 15

Repmin, RSB-style

Extract the writer and reader components in parallel:

parWR :: Day �Writer s� �Reader s� a ! a

parWR �Day f xs ys� � let ��x; s�;y� � �runWriter xs; runReader ys s�
in f �x;y�

Circular, so let must have letrec semantics. In particular,

repminWRRSB :: Tree Int ! Tree Int

repminWRRSB t � parWR �repminAux t�

is Bird’s circular, lazy solution to the repmin problem.

BF 16

Repmin, ADP-style

Conversely, extract writer then reader components sequentially:

seqWR :: Day �Writer s� �Reader s� a ! a

seqWR �Day f xs ys� � let �x; s� � runWriter xs

y � runReader ys s

in f �x;y�

Now no circularity, so plain non-recursive let suffices. In particular,

repminWRADP :: Tree Int ! Tree Int

repminWRADP t � seqWR �repminAux t�

is Pettorossi’s non-circular, higher-order solution to the repmin problem.

Lazily, clearly parWR � seqWR. Hence also repminWRRSB � repminWRADP.

BF 17

5. Multiple phases

Generalize from two to multiple phases:

data Phases f a where

Pure :: a ! Phases f a
Link :: ��a;b�! c�! f a ! Phases f b ! Phases f c

• Pure produces a chain with no effectful phases

• Link adds one more effectful phase to the chain

• homogeneous iteration of Day convolution

• cf lists as homogeneous iteration of pairing

• single initial value; each link adds combining function, collection of values

• eg Link f xs �Link g ys �Pure z�� :: Phases F E where

z :: A;ys :: F B;g :: �B;A�! C; xs :: F D; f :: �D;C�! E

BF 18

Free applicatives

Phases F is the free applicative on functor F , using concatenation:

instance Functor f) Applicative �Phases f � where

unit � Pure ��
Pure x
 ys � fmap �x; � ys

Link f xs ys
 zs � Link ���x; �y; z��! �f �x;y�; z�� xs �ys
 zs�

But concatenation is not what we want.

When F is itself applicative and not just a functor, we can (long) zip:

instance Applicative f) Applicative �Phases f � where -- different instance!

unit � Pure ��
Pure x
 ys � fmap �x; � ys

xs
 Pure y � fmap �;y� xs

Link f xs ys
 Link g zs ws � Link �cross f g � exch4� �xs
 zs� �ys
ws�

BF 19

Two phases, more or less

By design, Phases f generalizes Day f f . Hence injection:

inject :: Applicative f) Day f f a ! Phases f a

inject �Day f xs ys� � Link f xs �Link unitr ys �Pure ����

Analogous to phase1 and phase2, embed into an arbitrary phase:

phase :: Applicative f) Int ! f a ! Phases f a

phase 1 � now

phase i � later � phase �i � 1�

where

now :: Applicative f) f a ! Phases f a -- embed at phase one

now xs � Link unitr xs �Pure ���

later :: Applicative f) Phases f a ! Phases f a -- shift everything one phase later

later xs � Link unitl unit xs

BF 20

Sorting leaves of a tree in one pass

sortTree :: Ord a) Tree a ! Tree a

sortTree t � evalState �runPhases �sortTreeAux t�� � �

sortTreeAux :: Ord a) Tree a ! Phases �State �a�� �Tree a�
sortTreeAux t � phase 1 �traverse push t��i -- push :: a ! State �a� ��

phase 2 �modify sort��i
phase 3 �traverse ��x ! pop� t� -- pop :: ��! State �a� a

• commute phases, to bring the two traversals together

• traversal commutes with staging

• consecutive traversals in different phases fuse

sortTreeAux t � phase 2 �modify sort��i
traverse ��x ! phase 1 �push x��i phase 3 pop� t

BF 21

Breadth-first traversal in stages

bft :: Applicative f) �a ! f b�! Tree a ! f �Tree b�
bft f � runPhases � bftAux f

bftAux :: Applicative f) �a ! f b�! Tree a ! Phases f �Tree b�
bftAux f �Node x ts� � fmap �uncurry Node� �now �f x�
 later �traverse �bftAux f � ts��

cf depth-first, obtained by deleting staging annotations:

dft :: Applicative f) �a ! f b�! Tree a ! f �Tree b�
dft f �Node x ts� � fmap �uncurry Node� �f x
 traverse �dft f � ts�

In particular, bf relabelling, needing neither queues nor cyclicity/laziness:

bfl :: Tree a ! �b�! Tree b

bfl t xs � evalState �bft ��x ! pop� t� xs

BF 22

6. Conclusion

• Day convolution: natural monoidal structure underlying applicative functors

• multi-stage computation as iterated Day convolution

• same datatype as free applicatives, but different applicative instance

• unifying Bird’s and Pettorossi’s repmin solutions

• breadth-first traversal without shape/contents or laziness/circularity

• joint work with Oiśın Kidney, Tom Schrijvers, Nick Wu

• paper at MPC 2022 (LNCS 13544, doi 10.1007/978-3-031-16912-0_1)

• dedicated to Richard Bird

• http://www.cs.ox.ac.uk/jeremy.gibbons/

BF 23

Extra slides

BF 24

7. Queues

bfq :: Tree a ! �a�
bfq t � bfqAux �t � where

bfqAux �Node x ts : q� � x : bfqAux �q �� ts�
bfqAux � � � � �

Straightforward for enumeration, but what about traversal?

Anyway, it’s non-compositional. (More of an unfold than a fold. . .)

BF 25

Shape and contents

shape :: Tree a ! Tree ��
shape � fmap �const ���

and

levels :: Tree a ! ��a��
levels �Node x ts� � �x� : levelsF ts

levelsF :: Forest a ! ��a��
levelsF � foldr �lzw ����� � � �map levels -- “long zip with”

so bf � concat � levels. But now compositional.

BF 26

Relabelling

relabel :: �Tree ��; ��a���! �Tree a; ��a��� -- given appropriate list of lists. . .

relabel �Node �� ts; �x : xs� : xss� � let �us;yss� � relabelF �ts; xss�
in �Node x us; xs : yss�

relabelF :: �Forest ��; ��a���! �Forest a; ��a���
relabelF �� �; xss� � �� �; xss�
relabelF �t : ts; xss� � let �u;yss� � relabel �t; xss�

�us; zss� � relabelF �ts;yss�
in �u : us; zss�

— in some sense, the inverse of the split into shape and contents. So

bftSC :: Applicative f) �a ! f b�! Tree a ! f �Tree b�
bftSC f t � fmap �combine �shape t�� �traverse �traverse f � �levels t��

where combine u xss � fst �relabel �u; xss��

BF 27

Circular programs

Need not have the contents conveniently partitioned.
Instead, partition it on the fly:

bflabel :: Tree ��! �a�! Tree a

bflabel t xs � let �u; xss� � relabel �t; xs : xss� in u

(Due to Geraint Jones.)

Note that this let must be a letrec; the program is circular.

Hence another definition of breadth-first traversal.

It’s circular. So seems like it needs laziness?

But it’s still a bit clunky to have to separate into shape and contents.

BF 28

8. Repmin in two phases

Writer:

runWriter :: Writer w a ! �a;w�
tell :: Monoid w) Writer w ��

and reader:

runReader :: Reader r a ! �r ! a�
ask :: Reader r r

and minimum as a monoid over Int:

Min :: Int ! Min Int

getMin :: Min Int ! Int

We work in the Day convolution Day �Writer �Min Int�� �Reader �Min Int��.

BF 29

Core of repmin

repminAux :: Tree Int ! Day �Writer �Min Int�� �Reader �Min Int�� �Tree Int�
repminAux t � phase1 �minAux t��i phase2 �replaceAux t�

where

minAux :: Tree Int ! Writer �Min Int� �Tree ��� -- write each element in turn

minAux � traverse ��x ! tellMin x�
tellMin :: Int ! WInt ��
tellMin x � tell �Min x�

replaceAux :: Tree Int ! Reader �Min Int� �Tree Int� -- replacement for each element

replaceAux � traverse ��x ! askMin�
askMin :: RInt Int

askMin � fmap getMin ask

BF 30

Fusion

repminAux t

� �� specification ��
phase1 �traverse ��x ! tellMin x� t��i phase2 �traverse ��x ! askMin� t�
� �� naturality in applicative functor ��

traverse ��x ! phase1 �tellMin x�� t �i traverse ��x ! phase2 askMin� t

� �� fusion of traversals ��
traverse ��x ! phase1 �tellMin x��i phase2 askMin�

—a one-pass traversal, generating a two-phase computation for later execution.

