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Verified Programming

Thesis
The ability to state and prove properties of code is the crucial missing
technology in the evolution of software.

Stronger guarantees => less monitoring => higher performance.
Ability to trust software opens up new applications.
Confirmed quality helps open source, app stores, etc.
Verification is a tool we don’t have.
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The GURU Verified Programming Language (VPL)

Functional language
Dependently typed programs
General recursion
Notation for theorems, proofs about programs
Unaliased mutable state
Resource management layer
Type/Proof-checker, compiler to C
No concurrency
Aliasing for mutable state in progress
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Basic GURU Design

Terms : Types.
Proofs : Formulas.
“Full-spectrum” dependency.

I Types can contain arbitrary terms (<list A n >).
I Type checking decidable.
I Explicit casts with proofs of {T = T’}.

Proofs and types can appear in terms.
I computationally irrelevant.
I erased by compilation, definitional equality.
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The GURU Compiler

CARRAWAY Layer

Guru source code

Parser

Type/proof-checker

Pull out λs

Resource analysis

Linearization

Compile datatypes

C target code
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Resource Management in GURU

Resources: program data, I/O channels, mutable arrays.
Resource typing side-by-side with data typing.
Management policies definable.
Based on fundamental idea of a resource:

1 A resource can only be used by one entity at a time.
2 A resource can be temporarily decomposed into subresources.

Statically ensure all resources “consumed” exactly once.
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Subresources

“Goblet of Fire” as subresource of Harry Potter boxed set.
Sublist l’ as a subresource of (cons x l’).
Subresource relationship based on type <R x>:

I x:R – x has resource type R.
I y:<R’ x> – y has resource type R’, and is a subresource of x.

Cannot consume x until all subresources have been consumed.
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Example: Reference-Counted Data

GURU uses reference counting for inductive data.
Primitive (inc x) creates new view of x.
(dec x) consumes a view of x.
owned resource type for loaned reference.
match l with % suppose l:<owned x>
nil => ...

| cons x l’ => % then l’ : <owned l>

Must drop l’ before consuming l.
Can increment l’ to get new view.
Sometimes must collapse chains of ownership:
@ l’ : <owned x>
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Meta-Theoretic Concerns

To implement a VPL: go from proof theory to compilers.
“Practical” proof theory lacking.
Problems with disjunctions (φ ∨ φ′) and existentials (∃x .φ).
Rest of the talk: the problems, and progress towards a solution.
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Practical Proof Theory

How to prove your logic is consistent?
Basic strategy:

1 Identify subset of proofs which obviously are ok.
2 Define rewrite rules to transform any proof to one in the ok form.
3 Prove rules are (strongly or weakly) normalizing.

By Curry-Howard isomorphism:
I Proofs are λ-terms.
I Proof normalization is β-reduction.

Reducibility proofs are powerful, elegant.
But do not work well with disjunctions, existentials.
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Reducibility for Conjunction

Proof terms p ::= (p1,p2) | p.1 | p.2

Γ ` p1 : φ1 Γ ` p2 : φ2

Γ ` (p1,p2) : φ1 ∧ φ2
∧I

Γ ` p : φ1 ∧ φ2 i ∈ {1,2}
Γ ` p.i : φi

∧E

Reducibility is “hereditary normalization”, defined by eliminations.

Redφ is set of reducible terms of type φ.
p ∈ Redb ⇔ SN(p), for base types b.
p ∈ Redφ1∧φ2 ⇔ p.1 ∈ Redφ1 and p.2 ∈ Redφ2 .
p ∈ Redφ1→φ2 ⇔ forall p′ ∈ Redφ1 , (p p′) ∈ Redφ2
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What Goes Wrong with Disjunction

Proof terms p ::= 〈1,p〉 | 〈2,p〉 | case(p)(x .p1, x .p2)

Γ ` p : φi i ∈ {1,2}
Γ ` 〈i ,p〉 : φ1 ∧ φ2

∨I

Γ ` p : φ1 ∨ φ2 Γ, x : φ1 ` p1 : ψ Γ, x : φ2 ` p2 : ψ

Γ ` case(p)(x .p1, x .p2) : ψ
∨E

Attempt to define reducibility fails:

p ∈ Redφ1∨φ2 ⇔ forall ψ, p1,p2 ∈ Redψ, case(p)(x .p1, x .p2) ∈ Redψ

Not legal to appeal to Redψ.
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A Way Forward

Problem with ∨E:
I to use p : φ, need p′ : ψ, where ψ unrelated to φ.
I breaks definition of reducibility.

But compare sequent calculus rules:

Γ, φ1 ` ψ Γ, φ2 ` ψ

Γ, φ1 ∨ φ2 ` ψ
L∨

Γ, φ1, φ2 ` ψ

Γ, φ1 ∧ φ2 ` ψ
L∧

Term assignment for sequent calculus is strange.

Γ, y : φ1, z : φ2 ` p : ψ

Γ, x : φ1 ∧ φ2 ` [x .1/y , x .2/z]p : ψ
L∧

Limited by old view of “natural” deduction.
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A Direct Term Assignment

Left rules correspond to eliminations.
Why insist that the context Γ holds just variables?
Proposal:

I Assign terms to sequent calculus directly.
I Devise new terms for ∨E, ∃E.
I Allow Γ to hold terms.
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Elimination Rules

Γ,p.1 : φ1,p.2 : φ2 ` p′ : ψ

Γ,p : φ1 ∧ φ2 ` p′ : ψ
L∧

Γ,p.(1) : φ1 ` p1 : ψ
Γ,p.(2) : φ2 ` p2 : ψ

Γ,p : φ1 ∨ φ2 ` p1 ||p2 : ψ
L∨

Γ, (p a) : [a/x ]φ ` p′ : ψ

Γ,p : ∀x .φ ` p′ : ψ
L∀

Γ,p!x : φ ` p′ : ψ x 6∈ FV(Γ, ψ)

Γ,p : ∃x .φ ` νx .p′ : ψ
L∃

p : φ ` p : φ
Ax

Γ ` p2 : φ2 Γ, (p1 p2) : φ1 ` p′ : ψ

Γ,p1 : φ2 → φ1 ` p′ : ψ
L→

Γ ` p′ : ψ

Γ,p : φ ` [p]p′ : ψ
LW

Γ,p : φ,p : φ ` p′ : ψ

Γ,p : φ ` p′ : ψ
LC
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Reduction
We have separated logical terms (t .(i)) from structural (t1 || t2).
Logical terms have β-reductions:

(t1, t2).i  t .i
〈i , t〉.(i)  t
〈i , t〉.(3− i)  abort

Structural terms have commuting conversions:

(t1 || t2).i  (t1.i) || (t2.i)
abort || t  t

Simple unsound typing rules suffice for reducibility.

Γ ` p : φ1 ∨ φ2

Γ ` p.i : φi
∨E

Stump Purifying Natural Deduction WG 2.11, Mountain View



Towards Pure Natural Deduction

Next step: define sound natural deduction rules.

J ::= Γ ` ∆ | J || J
∆ ::= t1 : φ1, . . . , tn : φn

Prove type preservation.
Prove confluence.
Final result: Pure Natural Deduction.

I All rules are either direct logical rules or structural.
I Consistency proved by reducibility.
I Decidable equational theory, including commuting conversions.
I Practical proof theory ready to use for VPL.

www.guru-lang.org
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