
Purifying Natural Deduction Using Sequent
Calculus

Aaron Stump

Computational Logic Center
CS, The University of Iowa

Funding from NSF CAREER.

Verified Programming

Thesis
The ability to state and prove properties of code is the crucial missing
technology in the evolution of software.

Stronger guarantees => less monitoring => higher performance.
Ability to trust software opens up new applications.
Confirmed quality helps open source, app stores, etc.
Verification is a tool we don’t have.

Stump Purifying Natural Deduction WG 2.11, Mountain View

The GURU Verified Programming Language (VPL)

Functional language
Dependently typed programs
General recursion
Notation for theorems, proofs about programs
Unaliased mutable state
Resource management layer
Type/Proof-checker, compiler to C
No concurrency
Aliasing for mutable state in progress

Stump Purifying Natural Deduction WG 2.11, Mountain View

Basic GURU Design

Terms : Types.
Proofs : Formulas.
“Full-spectrum” dependency.

I Types can contain arbitrary terms (<list A n >).
I Type checking decidable.
I Explicit casts with proofs of {T = T’}.

Proofs and types can appear in terms.
I computationally irrelevant.
I erased by compilation, definitional equality.

Stump Purifying Natural Deduction WG 2.11, Mountain View

The GURU Compiler

CARRAWAY Layer

Guru source code

Parser

Type/proof-checker

Pull out λs

Resource analysis

Linearization

Compile datatypes

C target code

Stump Purifying Natural Deduction WG 2.11, Mountain View

Resource Management in GURU

Resources: program data, I/O channels, mutable arrays.
Resource typing side-by-side with data typing.
Management policies definable.
Based on fundamental idea of a resource:

1 A resource can only be used by one entity at a time.
2 A resource can be temporarily decomposed into subresources.

Statically ensure all resources “consumed” exactly once.

Stump Purifying Natural Deduction WG 2.11, Mountain View

Subresources

“Goblet of Fire” as subresource of Harry Potter boxed set.
Sublist l’ as a subresource of (cons x l’).
Subresource relationship based on type <R x>:

I x:R – x has resource type R.
I y:<R’ x> – y has resource type R’, and is a subresource of x.

Cannot consume x until all subresources have been consumed.

Stump Purifying Natural Deduction WG 2.11, Mountain View

Example: Reference-Counted Data

GURU uses reference counting for inductive data.
Primitive (inc x) creates new view of x.
(dec x) consumes a view of x.
owned resource type for loaned reference.
match l with % suppose l:<owned x>
nil => ...

| cons x l’ => % then l’ : <owned l>

Must drop l’ before consuming l.
Can increment l’ to get new view.
Sometimes must collapse chains of ownership:
@ l’ : <owned x>

Stump Purifying Natural Deduction WG 2.11, Mountain View

Meta-Theoretic Concerns

To implement a VPL: go from proof theory to compilers.
“Practical” proof theory lacking.
Problems with disjunctions (φ ∨ φ′) and existentials (∃x .φ).
Rest of the talk: the problems, and progress towards a solution.

Stump Purifying Natural Deduction WG 2.11, Mountain View

Practical Proof Theory

How to prove your logic is consistent?
Basic strategy:

1 Identify subset of proofs which obviously are ok.
2 Define rewrite rules to transform any proof to one in the ok form.
3 Prove rules are (strongly or weakly) normalizing.

By Curry-Howard isomorphism:
I Proofs are λ-terms.
I Proof normalization is β-reduction.

Reducibility proofs are powerful, elegant.
But do not work well with disjunctions, existentials.

Stump Purifying Natural Deduction WG 2.11, Mountain View

Reducibility for Conjunction

Proof terms p ::= (p1,p2) | p.1 | p.2

Γ ` p1 : φ1 Γ ` p2 : φ2

Γ ` (p1,p2) : φ1 ∧ φ2
∧I

Γ ` p : φ1 ∧ φ2 i ∈ {1,2}
Γ ` p.i : φi

∧E

Reducibility is “hereditary normalization”, defined by eliminations.

Redφ is set of reducible terms of type φ.
p ∈ Redb ⇔ SN(p), for base types b.
p ∈ Redφ1∧φ2 ⇔ p.1 ∈ Redφ1 and p.2 ∈ Redφ2 .
p ∈ Redφ1→φ2 ⇔ forall p′ ∈ Redφ1 , (p p′) ∈ Redφ2

Stump Purifying Natural Deduction WG 2.11, Mountain View

What Goes Wrong with Disjunction

Proof terms p ::= 〈1,p〉 | 〈2,p〉 | case(p)(x .p1, x .p2)

Γ ` p : φi i ∈ {1,2}
Γ ` 〈i ,p〉 : φ1 ∧ φ2

∨I

Γ ` p : φ1 ∨ φ2 Γ, x : φ1 ` p1 : ψ Γ, x : φ2 ` p2 : ψ

Γ ` case(p)(x .p1, x .p2) : ψ
∨E

Attempt to define reducibility fails:

p ∈ Redφ1∨φ2 ⇔ forall ψ, p1,p2 ∈ Redψ, case(p)(x .p1, x .p2) ∈ Redψ

Not legal to appeal to Redψ.

Stump Purifying Natural Deduction WG 2.11, Mountain View

A Way Forward

Problem with ∨E:
I to use p : φ, need p′ : ψ, where ψ unrelated to φ.
I breaks definition of reducibility.

But compare sequent calculus rules:

Γ, φ1 ` ψ Γ, φ2 ` ψ

Γ, φ1 ∨ φ2 ` ψ
L∨

Γ, φ1, φ2 ` ψ

Γ, φ1 ∧ φ2 ` ψ
L∧

Term assignment for sequent calculus is strange.

Γ, y : φ1, z : φ2 ` p : ψ

Γ, x : φ1 ∧ φ2 ` [x .1/y , x .2/z]p : ψ
L∧

Limited by old view of “natural” deduction.

Stump Purifying Natural Deduction WG 2.11, Mountain View

A Direct Term Assignment

Left rules correspond to eliminations.
Why insist that the context Γ holds just variables?
Proposal:

I Assign terms to sequent calculus directly.
I Devise new terms for ∨E, ∃E.
I Allow Γ to hold terms.

Stump Purifying Natural Deduction WG 2.11, Mountain View

Elimination Rules

Γ,p.1 : φ1,p.2 : φ2 ` p′ : ψ

Γ,p : φ1 ∧ φ2 ` p′ : ψ
L∧

Γ,p.(1) : φ1 ` p1 : ψ
Γ,p.(2) : φ2 ` p2 : ψ

Γ,p : φ1 ∨ φ2 ` p1 ||p2 : ψ
L∨

Γ, (p a) : [a/x]φ ` p′ : ψ

Γ,p : ∀x .φ ` p′ : ψ
L∀

Γ,p!x : φ ` p′ : ψ x 6∈ FV(Γ, ψ)

Γ,p : ∃x .φ ` νx .p′ : ψ
L∃

p : φ ` p : φ
Ax

Γ ` p2 : φ2 Γ, (p1 p2) : φ1 ` p′ : ψ

Γ,p1 : φ2 → φ1 ` p′ : ψ
L→

Γ ` p′ : ψ

Γ,p : φ ` [p]p′ : ψ
LW

Γ,p : φ,p : φ ` p′ : ψ

Γ,p : φ ` p′ : ψ
LC

Stump Purifying Natural Deduction WG 2.11, Mountain View

Reduction
We have separated logical terms (t .(i)) from structural (t1 || t2).
Logical terms have β-reductions:

(t1, t2).i t .i
〈i , t〉.(i) t
〈i , t〉.(3− i) abort

Structural terms have commuting conversions:

(t1 || t2).i (t1.i) || (t2.i)
abort || t t

Simple unsound typing rules suffice for reducibility.

Γ ` p : φ1 ∨ φ2

Γ ` p.i : φi
∨E

Stump Purifying Natural Deduction WG 2.11, Mountain View

Towards Pure Natural Deduction

Next step: define sound natural deduction rules.

J ::= Γ ` ∆ | J || J
∆ ::= t1 : φ1, . . . , tn : φn

Prove type preservation.
Prove confluence.
Final result: Pure Natural Deduction.

I All rules are either direct logical rules or structural.
I Consistency proved by reducibility.
I Decidable equational theory, including commuting conversions.
I Practical proof theory ready to use for VPL.

www.guru-lang.org

Stump Purifying Natural Deduction WG 2.11, Mountain View

