Making M eta-Programming Predictable and Enjoyable

or
“opening the compiler box for normal application programnng”

Predictability

What is the current state of the foundations/technology/tools?
Static type checking of multiple stages
Error reporting to the “right” stage or abstraction level
Avoid “surprises” arising with “soft” macro/transformation semantics?
9

Avoid black-box Turing-complete meta-programming (simulates black-box
compiler construction)?

These are key issues, especially if we are targetting productivity and/or
performance benefits beyond compiler construction (or DSL implementation or
language extension)

IFIPWG2.11

2

Enjoyability

What is the current state of the foundations/technology/tools?

Expressiveness vs safety/predictability

|s introspection or reflection doomed to be type unsafe? Problem with
“opening types’? E.g., what about pattern matching like

mat ch code exp wth
< Add . ~X .~y > -> . < 42 + .~y >,
| . < fun x -> .~ce > ->.<let Xx =42 1n .~C e >.

o What kind of “intrusion” really matters: syntax? semantics? surprises?
These are key issues, especially if we are targetting productivity and/or

performance benefits beyond compiler construction (or DSL implementation or
language extension)

IFIPWG2.11

3

A MOVING TARGET

HE X-LANGUAGE

A TOOL FOR EXPERT PROGRAMMERS TO DRIVE
PROGRAM OPTIMIZATION WHILE MAINTAINING

HIGH PRODUCTIVITY AND PORTABILITY

Scalable On-Chip Parallel Computing

Massive parallelism on a chip
o Physically distributed, layered and heterogeneous resources
Structure and nature of the hardware exposed to the software...
... need to be considered for correctness and/or performance
% General-purpose applications need choice for scalable performance

o Towards adaptive programs (multi-version, continuous optimization)
o SW/HW negociation, from load balancing to algorithm selection

Scalable On-Chip Parallel Computing

Impact on

Massive parallelism on a chip
o Physically distributed, layered and heterogeneous resources

Structure and nature of the hardware exposed to the software...
... need to be considered for correctness and/or performance

General-purpose applications need choice for scalable performance
o Towards adaptive programs (multi-version, continuous optimization)
o SW/HW negociation, from load balancing to algorithm selection

Programming models
Optimizing compilers
Component models

Run-time systems

IFIPWG2.11

5

Goals of the X-Language

Compact representation of multiple program versions
— Derive multiple or multi-version programs from a single source
— Generate code at run-time if necessary

Explicit multiple optimization strategies
— Rely on predefined transformation primitives
— Declare high-level optimization goals rather than explicit transformations

Implement and apply custom optimizations
— Custom transformations can be implemented by expert programmers
— Derive decision trees automatically from abstract descriptions

Bring together individual transformations and actual performance measurements
— Implement local/layered learning/search strategies
— Couple with hardware counters, sampling mechanisms and phase detection

IFIPWG2.11

6

Key Design |deas

Build on top of multistage programming

Manipuate code expressions
code ¢ = ‘{ bar(42); *‘}

Splice code into code

“{ foo("%c)); '} /1 foo(bar(42));
» Generate and run code
run(c);

» Cross-stage persistence
int x =42; code ¢ = “{ foo(bar(x)); '}

IFIPWG2.11

/

Key Design |deas

Build on top of multistage programming

Manipuate code expressions
code ¢ = ‘{ bar(42); *‘}

Splice code into code

“{ foo("%c)); '} /1 foo(bar(42));
#® Generate and run code
run(c);

o Cross-stage persistence
int x =42; code ¢ = “{ foo(bar(x)); '}

Provide some form of reflection that does not alter observable semantics
(Assuming transformation legality)

» Use code annotations: #pragma x| ang
#pragma xlang transformation [scope nanme | node_nanme_regexp
| paraneters | [additional names |

Example: #pragma xlang unrol | | oopl 4
o Some kind of well-behaved, restricted AOP?

IFIPWG2.11

/

Features of the Language

Transformations primitives
Loop transformations
— unrolling, strip-mining, distribution, fusion, coalescing, interchange, skewing, reindexing,
hoisting, shifting, scalar promotion, privatization
Interprocedural transformations
— inlining, cloning, partial evaluation, slicing

IFIPWG2.11

8

Features of the Language

Transformations primitives

>

Loop transformations

— unrolling, strip-mining, distribution, fusion, coalescing, interchange, skewing, reindexing,
hoisting, shifting, scalar promaotion, privatization

Interprocedural transformations

— inlining, cloning, partial evaluation, slicing

Compound transformations

X

>
>
>

Composition of code generators (multi-stage evaluation with splicing)
Sequence of annotation pragmas

Procedural abstraction (build custom transformations from primitives)
Control the application and parameters of each transformation

IFIPWG2.11

8

Features of the Language

Transformations primitives

Loop transformations
— unrolling, strip-mining, distribution, fusion, coalescing, interchange, skewing, reindexing,
hoisting, shifting, scalar promotion, privatization

|Interprocedural transformations
— inlining, cloning, partial evaluation, slicing
Compound transformations
o Composition of code generators (multi-stage evaluation with splicing)
Sequence of annotation pragmas
#® Procedural abstraction (build custom transformations from primitives)
o Control the application and parameters of each transformation

Static analyses (crude scalar data-flow information right now)

IFIPWG2.11

8

Features of the Language

Transformations primitives

Loop transformations
— unrolling, strip-mining, distribution, fusion, coalescing, interchange, skewing, reindexing,
hoisting, shifting, scalar promotion, privatization

|Interprocedural transformations
— inlining, cloning, partial evaluation, slicing
Compound transformations
o Composition of code generators (multi-stage evaluation with splicing)
Sequence of annotation pragmas
#® Procedural abstraction (build custom transformations from primitives)
o Control the application and parameters of each transformation

Static analyses (crude scalar data-flow information right now)

Dynamic analyses (only time measurement right now)

IFIPWG2.11

8

Example: Transformation Sequences

Each transformation regererates annotations for the next transformation

#ipragma x| ang name | oopl
for (I=m 1<n; |++)

a[i] = b[i];

#pragma xlang stripmne loopl 4 |oopl 2 |oopl 3
#pragma x|l ang unroll |oopl 2

for (|-|| | <I | +4;

a[i] = b[i]:

#pragma x| ang name | oopl
for (11=m 11+4<n; 11+=4) {
#pragma x| ang name | oopl 2

| ++)

— #pragma x|l ang nane | oopl 3

#pragma x|l ang unrol |

| oopl 2

IFIPWG2.11

9

Example: Transformation Sequences

Each transformation regererates annotations for the next transformation

#pragma x|l ang nane | oopl
for (11=m 11+4<n; 11+=4) {
#pragma x|l ang nanme | oopl 2

for (|—|| | <1 +4; |+4)
ali] = b[i];
#pragma x|l ang nanme | oopl 3
}
fo =l1; 1<n | ++

#pragma x|l ang unroll |oopl 2

#pragma x| ang name | oopl

for (11=m 11+4<n; 11+=4) {
#pragma x|l ang nane | oopl 2
|]

= b[i];

i1 +1;

= b[1];

i1 +2;

QT T T

= b[1];
}

#pragma x| ang nanme | oopl_3

for

a[l] =

(|—||

| <n | ++)
b[|],

IFIPWG2.11

10

Example: Evaluating Multiple Versions

for (u=l, u<8; u++) {

code c =

#pragma x| ang nane | oopl

for (1=m 1<n; |++)

a[i] =b[i];

#pragma x|l ang stripmne loopl u [oopl 2 |oopl 3
"}
run(c, &elapsed tine);
[/ drive search/learning strategy fromthis eval uati on

}

IFIPWG2.11

11

Full Example: Matrix Product in ATLAS

#pragma x| ang nane il oop
for (1=0; 1<NB;, i+%)
#pragma x|l ang nanme || oop
for (]=0; j<NB;, j++)
#pragma x|l ang name kl oop

for

(k=0;

K<NB; k++) {

} cli][y] =cli][J] +ali]{k] * b[k][J];

#pragna
#pragna
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragna
#pragna
#pragna
#pragna

x| ang
x| ang
x| ang
x| ang
Xl ang
x| ang
x| ang
x| ang
XI ang
x| ang
x| ang
x| ang

stripmne iloop NU NU oop
stripmne jloop MJ MJ oop

| nt erchange kl oop MJ oop

I nt erchange j 1 oop NU oop

| nt erchange kl oop NU oop

ful lunrol | NU oop

ful lunroll MJ oop

scalarize in b in kloop
scalarize in a in kloop

scal arize in&ut ¢ in kloop
hoi st kl oop.| oads before kl oop
hoi st kl oop.stores after kloop

IFIPWG2.11

12

Full Example: Matrix Product in ATLAS

#pragma x| ang nane il oop
for (1=0; 1<NB; i++) {
#pragma x|l ang nanme || oop
for (]=0; J<NB; j+=4) {
#pragma x|l ang nane kl oop. | oads
{ ¢ 00 =-c[i+0][}J0]; c O 1
c 02 =-c[i+0][]+2]; c 0 3

c[1+0][] +1];
c[1+0][J+3]; }

#pragma x|l ang nane kloop
for (k=0; k<NB; k++) {
{ al0=a |+O][k ;al =a[i+0][k];
a2 =a[i+0][k]; a3 = a[i+0][k]; }
{ b_0 = b[k][j+0]; b_1 = b[K][]+1];
b_2 = b[k][j+2]; b_3 = b[k][j+3]; }
{ ¢ 00=c0O0+a 0*bh 0; ¢ 0 1=c 0 1+a 1*b 1;
c 0 2=c 0 2+a 2*b 2; ¢ 0 3=c 0 3+a_3*b _3; }
}
#pragma x|l ang nane kloop stores
{ c[1+0][]+0] = c_ _0; c[i+0][j+1] = c 0O 1;
c[1+0][j+2] = ¢ 0 2; c[i1+0][}+3] =¢c 0 3; }

IFIPWG2.11

13

Preliminary Resultson |A64

Cycles/FMA

Dgemm

0,7

0,68
0,65

—— |

0,63
0,6 -
0,58

éé
§<

0,55 i —d K ———

0,53

0,5 e —————————————————————————

128

256

384

512

640

768

896 1024 1152 1280 1408 1536 1664 1792 1920 2048

Matrix Size

m Atlas

A XLanguage+Dcopy
& Xlanguage+Memcpy
» Xlanguage+MKLcpy
» Dgemm MKL

m Peak (0.5)

IFIPWG2.11

14

Main Limitations

Hard to understand and keep track of transformations effects
— Build and manage long sequences of transformations
— Convince the expert programmer that it saves him time

Define custom transformations, beyond combination of existing primitive ones
— General kind of program construction
— Algorithm selection

IFIPWG2.11

15

Conclusion: Future Optimizing Compilers

Research Directions

Progresses

Compilers must do tedious things in a predictable manner...
... but should not try to be smart

— Fully automatic framework for abstraction-penalty removal
— Machine learning and rule-based system for architecture-aware optimizations
— Let application experts tell what is important

Tightly coupled off-line and on-line optimization
— Aggressive off-line analysis and narrowing of the optimization search-space
— Low-overhead just-in-time/run-time transformations and code generation

Complement intermediate representations with program generators
— EXxpose algebraic properties of the search space
— Support global and complex transformation sequences

SPIRAL
Tools for safe and efficient metaprogramming

Machine learning compilers

IFIPWG2.11

16

	Predictability
	Enjoyability
	{small A Moving Target} \ ~ \ The X-Language \ ~ \ {small A Tool for Expert Programmers to Drive Program Optimization while Maintaining High Productivity and Portability}
	Scalable On-Chip Parallel Computing
	Scalable On-Chip Parallel Computing

	Goals of the X-Language
	Key Design Ideas
	Key Design Ideas

	Features of the Language
	Features of the Language
	Features of the Language
	Features of the Language

	Example: Transformation Sequences
	Example: Transformation Sequences
	Example: Evaluating Multiple Versions
	Full Example: Matrix Product in ATLAS
	Full Example: Matrix Product in ATLAS
	Preliminary Results on IA64
	Main Limitations
	Conclusion: Future Optimizing Compilers

