
Making Meta-Programming Predictable and Enjoyable
or

“opening the compiler box for normal application programmers”

2
IF

IP
W

G
2.

11

Predictability

What is the current state of the foundations/technology/tools?

Static type checking of multiple stages

Error reporting to the “right” stage or abstraction level

Avoid “surprises” arising with “soft” macro/transformation semantics?

Avoid black-box Turing-complete meta-programming (simulates black-box
compiler construction)?

These are key issues, especially if we are targetting productivity and/or
performance benefits beyond compiler construction (or DSL implementation or
language extension)

3
IF

IP
W

G
2.

11

Enjoyability

What is the current state of the foundations/technology/tools?

Expressiveness vs safety/predictability

Is introspection or reflection doomed to be type unsafe? Problem with
“opening types”? E.g., what about pattern matching like

match code_exp with
.< Add .~x .~y >. -> .< 42 + .~y >.

| .< fun x -> .~c_e >. -> .< let x = 42 in .~c_e >.

What kind of “intrusion” really matters: syntax? semantics? surprises?

These are key issues, especially if we are targetting productivity and/or
performance benefits beyond compiler construction (or DSL implementation or
language extension)

A MOVING TARGET

THE X -LANGUAGE

A TOOL FOR EXPERT PROGRAMMERS TO DRIVE

PROGRAM OPTIMIZATION WHILE MAINTAINING

HIGH PRODUCTIVITY AND PORTABILITY

Scalable On-Chip Parallel Computing
C

on
te

xt
C

on
te

xt
C

on
te

xt
C

on
te

xt

Massive parallelism on a chip

Physically distributed, layered and heterogeneous resources

Structure and nature of the hardware exposed to the software...
... need to be considered for correctness and/or performance

General-purpose applications need choice for scalable performance

Towards adaptive programs (multi-version, continuous optimization)

SW/HW negociation, from load balancing to algorithm selection

5
IF

IP
W

G
2.

11

Scalable On-Chip Parallel Computing
C

on
te

xt
C

on
te

xt
C

on
te

xt
C

on
te

xt

Massive parallelism on a chip

Physically distributed, layered and heterogeneous resources

Structure and nature of the hardware exposed to the software...
... need to be considered for correctness and/or performance

General-purpose applications need choice for scalable performance

Towards adaptive programs (multi-version, continuous optimization)

SW/HW negociation, from load balancing to algorithm selection

Im
pa

ct
on

Im
pa

ct
on

Im
pa

ct
on

Im
pa

ct
on

Programming models

Optimizing compilers

Component models

Run-time systems

6
IF

IP
W

G
2.

11

Goals of the X-Language

1. Compact representation of multiple program versions
→ Derive multiple or multi-version programs from a single source

→ Generate code at run-time if necessary

2. Explicit multiple optimization strategies
→ Rely on predefined transformation primitives

→ Declare high-level optimization goals rather than explicit transformations

3. Implement and apply custom optimizations
→ Custom transformations can be implemented by expert programmers

→ Derive decision trees automatically from abstract descriptions

4. Bring together individual transformations and actual performance measurements
→ Implement local/layered learning/search strategies

→ Couple with hardware counters, sampling mechanisms and phase detection

7
IF

IP
W

G
2.

11

Key Design Ideas

Build on top of multistage programming

Manipuate code expressions
code c = ‘{ bar(42); ‘}

Splice code into code
‘{ foo(‘%(c)); ‘} // foo(bar(42));

Generate and run code
run(c);

Cross-stage persistence
int x = 42; code c = ‘{ foo(bar(x)); ‘}

7
IF

IP
W

G
2.

11

Key Design Ideas

Build on top of multistage programming

Manipuate code expressions
code c = ‘{ bar(42); ‘}

Splice code into code
‘{ foo(‘%(c)); ‘} // foo(bar(42));

Generate and run code
run(c);

Cross-stage persistence
int x = 42; code c = ‘{ foo(bar(x)); ‘}

Provide some form of reflection that does not alter observable semantics

(Assuming transformation legality)

Use code annotations: #pragma xlang
#pragma xlang transformation [scope_name] node_name_regexp

[parameters] [additional_names]

Example: #pragma xlang unroll loop1 4

Some kind of well-behaved, restricted AOP?

8
IF

IP
W

G
2.

11

Features of the Language

Transformations primitives

Loop transformations
→ unrolling, strip-mining, distribution, fusion, coalescing, interchange, skewing, reindexing,

hoisting, shifting, scalar promotion, privatization

Interprocedural transformations
→ inlining, cloning, partial evaluation, slicing

8
IF

IP
W

G
2.

11

Features of the Language

Transformations primitives

Loop transformations
→ unrolling, strip-mining, distribution, fusion, coalescing, interchange, skewing, reindexing,

hoisting, shifting, scalar promotion, privatization

Interprocedural transformations
→ inlining, cloning, partial evaluation, slicing

Compound transformations

Composition of code generators (multi-stage evaluation with splicing)

Sequence of annotation pragmas

Procedural abstraction (build custom transformations from primitives)

Control the application and parameters of each transformation

8
IF

IP
W

G
2.

11

Features of the Language

Transformations primitives

Loop transformations
→ unrolling, strip-mining, distribution, fusion, coalescing, interchange, skewing, reindexing,

hoisting, shifting, scalar promotion, privatization

Interprocedural transformations
→ inlining, cloning, partial evaluation, slicing

Compound transformations

Composition of code generators (multi-stage evaluation with splicing)

Sequence of annotation pragmas

Procedural abstraction (build custom transformations from primitives)

Control the application and parameters of each transformation

Static analyses (crude scalar data-flow information right now)

8
IF

IP
W

G
2.

11

Features of the Language

Transformations primitives

Loop transformations
→ unrolling, strip-mining, distribution, fusion, coalescing, interchange, skewing, reindexing,

hoisting, shifting, scalar promotion, privatization

Interprocedural transformations
→ inlining, cloning, partial evaluation, slicing

Compound transformations

Composition of code generators (multi-stage evaluation with splicing)

Sequence of annotation pragmas

Procedural abstraction (build custom transformations from primitives)

Control the application and parameters of each transformation

Static analyses (crude scalar data-flow information right now)

Dynamic analyses (only time measurement right now)

9
IF

IP
W

G
2.

11

Example: Transformation Sequences

Each transformation regererates annotations for the next transformation

#pragma xlang name loop1
for (i=m; i<n; i++)
a[i] = b[i];

#pragma xlang stripmine loop1 4 loop1_2 loop1_3
#pragma xlang unroll loop1_2

−→

#pragma xlang name loop1
for (ii=m; ii+4<n; ii+=4) {

#pragma xlang name loop1_2
for (i=ii; i<ii+4; i++)
a[i] = b[i];

#pragma xlang name loop1_3
}
for (i=ii; i<n i++)

a[i] = b[i];

#pragma xlang unroll loop1_2

10
IF

IP
W

G
2.

11

Example: Transformation Sequences

Each transformation regererates annotations for the next transformation

#pragma xlang name loop1
for (ii=m; ii+4<n; ii+=4) {
#pragma xlang name loop1_2
for (i=ii; i<ii+4; i++)

a[i] = b[i];
#pragma xlang name loop1_3

}
for (i=ii; i<n i++)
a[i] = b[i];

#pragma xlang unroll loop1_2
−→

#pragma xlang name loop1
for (ii=m; ii+4<n; ii+=4) {

#pragma xlang name loop1_2
i = ii;
a[i] = b[i];
i = ii+1;
a[i] = b[i];
i = ii+2;
a[i] = b[i];
i = ii+3;
a[i] = b[i];

}
#pragma xlang name loop1_3
for (i=ii; i<n i++)

a[i] = b[i];

11
IF

IP
W

G
2.

11

Example: Evaluating Multiple Versions

for (u=1; u<8; u++) {
code c = ‘{

#pragma xlang name loop1
for (i=m; i<n; i++)
a[i] = b[i];

#pragma xlang stripmine loop1 u loop1_2 loop1_3
‘}
run(c, &elapsed_time);
// drive search/learning strategy from this evaluation

}

12
IF

IP
W

G
2.

11

Full Example: Matrix Product in ATLAS

#pragma xlang name iloop
for (i=0; i<NB; i++)
#pragma xlang name jloop
for (j=0; j<NB; j++)

#pragma xlang name kloop
for (k=0; k<NB; k++) {
c[i][j] = c[i][j] + a[i][k] * b[k][j];

}
// Simplified transformation sequence for IA64

// (excluding search engine, pipelining, prefetch and page copying)

#pragma xlang stripmine iloop NU NUloop
#pragma xlang stripmine jloop MU MUloop
#pragma xlang interchange kloop MUloop
#pragma xlang interchange jloop NUloop
#pragma xlang interchange kloop NUloop
#pragma xlang fullunroll NUloop
#pragma xlang fullunroll MUloop
#pragma xlang scalarize_in b in kloop
#pragma xlang scalarize_in a in kloop
#pragma xlang scalarize_in&out c in kloop
#pragma xlang hoist kloop.loads before kloop
#pragma xlang hoist kloop.stores after kloop

13
IF

IP
W

G
2.

11

Full Example: Matrix Product in ATLAS

#pragma xlang name iloop
for (i=0; i<NB; i++) {
#pragma xlang name jloop
for (j=0; j<NB; j+=4) {
#pragma xlang name kloop.loads
{ c_0_0 = c[i+0][j+0]; c_0_1 = c[i+0][j+1];

c_0_2 = c[i+0][j+2]; c_0_3 = c[i+0][j+3]; }
#pragma xlang name kloop
for (k=0; k<NB; k++) {

{ a_0 = a[i+0][k]; a_1 = a[i+0][k];
a_2 = a[i+0][k]; a_3 = a[i+0][k]; }

{ b_0 = b[k][j+0]; b_1 = b[k][j+1];
b_2 = b[k][j+2]; b_3 = b[k][j+3]; }

{ c_0_0=c_0_0+a_0*b_0; c_0_1=c_0_1+a_1*b_1;
c_0_2=c_0_2+a_2*b_2; c_0_3=c_0_3+a_3*b_3; }

// ...

}
#pragma xlang name kloop.stores
{ c[i+0][j+0] = c_0_0; c[i+0][j+1] = c_0_1;

c[i+0][j+2] = c_0_2; c[i+0][j+3] = c_0_3; }
}}
// Remainder code

14
IF

IP
W

G
2.

11

Preliminary Results on IA64

15
IF

IP
W

G
2.

11

Main Limitations

1. Hard to understand and keep track of transformations effects
→ Build and manage long sequences of transformations

→ Convince the expert programmer that it saves him time

2. Define custom transformations, beyond combination of existing primitive ones
→ General kind of program construction

→ Algorithm selection

16
IF

IP
W

G
2.

11

Conclusion: Future Optimizing Compilers
R

es
ea

rc
h

D
ire

ct
io

ns
R

es
ea

rc
h

D
ire

ct
io

ns
R

es
ea

rc
h

D
ire

ct
io

ns
R

es
ea

rc
h

D
ire

ct
io

ns

Compilers must do tedious things in a predictable manner...
... but should not try to be smart

→ Fully automatic framework for abstraction-penalty removal

→ Machine learning and rule-based system for architecture-aware optimizations

→ Let application experts tell what is important

Tightly coupled off-line and on-line optimization
→ Aggressive off-line analysis and narrowing of the optimization search-space

→ Low-overhead just-in-time/run-time transformations and code generation

Complement intermediate representations with program generators
→ Expose algebraic properties of the search space

→ Support global and complex transformation sequences

P
ro

gr
es

se
s

P
ro

gr
es

se
s

P
ro

gr
es

se
s

P
ro

gr
es

se
s SPIRAL

Tools for safe and efficient metaprogramming

Machine learning compilers

	Predictability
	Enjoyability
	{small A Moving Target} \ ~ \ The X-Language \ ~ \ {small A Tool for Expert Programmers to Drive Program Optimization while Maintaining High Productivity and Portability}
	Scalable On-Chip Parallel Computing
	Scalable On-Chip Parallel Computing

	Goals of the X-Language
	Key Design Ideas
	Key Design Ideas

	Features of the Language
	Features of the Language
	Features of the Language
	Features of the Language

	Example: Transformation Sequences
	Example: Transformation Sequences
	Example: Evaluating Multiple Versions
	Full Example: Matrix Product in ATLAS
	Full Example: Matrix Product in ATLAS
	Preliminary Results on IA64
	Main Limitations
	Conclusion: Future Optimizing Compilers

