Relational Algebra by Way of Adjunctions

Jeremy Gibbons
Fritz Henglein
Ralf Hinze
Nicolas Wu
1. Overview

- relational databases in terms of certain *monads* (sets, bags, lists)
- monads support *comprehensions*, providing a *query notation*:

 \[
 \begin{align*}
 & (\text{customer.name}, \text{invoice.amount}) \\
 & | \text{customer} \leftarrow \text{customers}, \\
 & \quad \text{invoice} \leftarrow \text{invoices}, \text{invoice.due} \leq \text{today}, \\
 & \quad \text{customer.cid} == \text{invoice.customer}
 \end{align*}
 \]

- monads have nice mathematical foundations via *adjunctions*
- monad structure explains *aggregation, selection, projection*
- less obvious how to explain *join*
2. Galois connections

Relating monotonic functions between two ordered sets:

\[(A, \leq) \perp (B, \subseteq) \quad \text{means} \quad f(b \leq a) \iff b \subseteq g(a)\]

For example,

\[(\mathbb{R}, \leq_{\mathbb{R}}) \perp (\mathbb{Z}, \leq_{\mathbb{Z}}) \quad \text{and} \quad (\mathbb{Z}, \leq) \perp (\mathbb{Z}, \leq)\]

“Change of coordinates” can sometimes simplify reasoning. Eg rhs gives \(n \times k \leq m \iff n \leq m \div k\), and multiplication is easier to reason about than rounding division.
3. Category theory from ordered sets

A category C consists of

- a set* $|C|$ of objects,
- a set* $C(X, Y)$ of arrows $X \to Y$ for each $X, Y : |C|$,
- identity arrows $id_X : X \to X$ for each X
- composition $f \cdot g : X \to Z$ of compatible arrows $g : X \to Y$ and $f : Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \to b$ iff $a \leq b$.

\[\cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \]

Many categorical concepts are generalisations from ordered sets.

*proviso...
4. Concrete categories

Ordered sets are a **concrete category**: roughly,

- the objects are *sets with additional structure*
- the arrows are *structure-preserving mappings*

For example, category **PoSet** has preordered sets \((A, \leq)\) as objects, and monotonic functions \(h: (A, \leq) \to (B, \sqsubseteq)\) as arrows:

\[
a \leq a' \implies h(a) \sqsubseteq h(a')
\]

For another example, category **CMon** has commutative monoids \((M, \otimes, \varepsilon)\) as objects, and homomorphisms \(h: (M, \otimes, \varepsilon) \to (M', \oplus, \varepsilon')\) as arrows:

\[
\begin{align*}
 h (m \otimes n) &= h m \oplus h n \\
 h \varepsilon &= \varepsilon'
\end{align*}
\]

Trivially, category **Set** has sets (no additional structure) as objects, and total functions as arrows.
5. Functors

Categories are themselves structured objects...

A functor \(F : C \to D \) is an operation on both objects and arrows, preserving the structure: \(F f : F X \to F Y \) when \(f : X \to Y \), and

\[
\begin{align*}
F id_X &= id_{F X} \\
F (f \cdot g) &= F f \cdot F g
\end{align*}
\]

For example, forgetful functor \(U : \text{CMon} \to \text{Set} \):

\[
\begin{align*}
U (M, \otimes, \varepsilon) &= M \\
U (h : (M, \otimes, \varepsilon) \to (M', \oplus, \varepsilon')) &= h : M \to M'
\end{align*}
\]

Conversely, \(\text{Free} : \text{Set} \to \text{CMon} \) generates the free commutative monoid (ie bags) on a set of elements:

\[
\begin{align*}
\text{Free} A &= (\text{Bag} A, \cup, \emptyset) \\
\text{Free} (f : A \to B) &= \text{map} f : \text{Bag} A \to \text{Bag} B
\end{align*}
\]
6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories \mathbf{C}, \mathbf{D}, and functors $\mathbf{L} : \mathbf{D} \to \mathbf{C}$ and $\mathbf{R} : \mathbf{C} \to \mathbf{D}$, adjunction $\mathbf{C} \dashv \mathbf{D}$ means* $[-] : \mathbf{C}(\mathbf{L} X, Y) \simeq \mathbf{D}(X, \mathbf{R} Y) : [-]$.

The functional programmer's favourite example is given by currying:

$$\text{Set} \dashv \text{Set} \quad \text{with} \quad \text{curry} : \text{Set}(X \times P, Y) \simeq \text{Set}(X, Y^P) : \text{curry}^\circ$$

hence definitions and properties of $\text{apply} = \text{uncurry} \ \text{id}_{Y^P} : Y^P \times P \to Y$.

*Note: Adjunction definitions and properties are expressed using natural transformations and the concept of adjunctions in category theory.
7. Products and coproducts

\[
\begin{array}{ccc}
\text{Set} & \rightarrow & \text{Set}^2 \\
\rightarrow & \Delta & \rightarrow \\
\Delta & \rightarrow & \rightarrow \text{Set}
\end{array}
\]

with

\[
\begin{align*}
\text{fork} & \colon \text{Set}^2(\Delta A, (B, C)) \cong \text{Set}(A, B \times C) & \colon \text{fork}^\circ \\
\text{junc}^\circ & \colon \text{Set}(A + B, C) \cong \text{Set}^2((A, B), \Delta C) & \colon \text{junc}
\end{align*}
\]

hence

\[
\begin{align*}
dup & = \text{fork } id_{A,A} : \text{Set}(A, A \times A) \\
(fst, snd) & = \text{fork}^\circ id_{B \times C} : \text{Set}^2(\Delta (B, C), (B, C))
\end{align*}
\]

give tupling and projection. Dually for sums and injections. And more generally for any arity—even zero.
8. Free commutative monoids

Free/forgetful adjunction:

\[
\text{CMon} \quad \Downarrow \quad \text{Set} \quad \text{with} \quad [-] : \text{CMon}(\text{Free } A, (M, \otimes, \varepsilon)) \\
\cong \text{Set}(A, U (M, \otimes, \varepsilon)) \quad : \quad [-]
\]

Unit and counit:

\[
single A = [id_{\text{Free } A}] : A \to U (\text{Free } A) \\
\langle M \rangle = [id_M] : \text{Free } (U M) \to M \quad \text{-- for } M = (M, \otimes, \varepsilon)
\]

whence, for \(h : \text{Free } A \to M \) and \(f : A \to U M = M \),

\[
h = \langle M \rangle \cdot \text{Free } f \iff U h \cdot \text{single } A = f
\]

ie 1-to-1 correspondence between (i) homomorphisms from the free commutative monoid (bags) and (ii) their behaviour on singletons.
9. Aggregation

Aggregations are bag homomorphisms:

<table>
<thead>
<tr>
<th>aggregation</th>
<th>monoid</th>
<th>action on singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>((\mathbb{N}, 0, +))</td>
<td>(\cdot a \mapsto 1)</td>
</tr>
<tr>
<td>sum</td>
<td>((\mathbb{R}, 0, +))</td>
<td>(\cdot a \mapsto a)</td>
</tr>
<tr>
<td>max</td>
<td>((\mathbb{Z} \cup {-\infty}, -\infty, \max))</td>
<td>(\cdot a \mapsto a)</td>
</tr>
<tr>
<td>all</td>
<td>((\mathbb{B}, True, \land))</td>
<td>(\cdot a \mapsto a)</td>
</tr>
</tbody>
</table>

Projection \(\pi_i = \text{Bag } i\) is a homomorphism—just functorial action. Selection \(\sigma_p\) is also a homomorphism, to bags, with action

\[
guard : (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A
\]

\[
guard p a = \text{if } p a \text{ then } \cdot a \text{ else } \emptyset
\]

Projection and selection laws follow from homomorphism laws (and from laws of coproducts, since \(\mathbb{B} = 1 + 1\)).
10. Monads

Finite bags form a *monad* \((\text{Bag}, \text{union}, \text{single})\) with

\[
\text{Bag} = \text{U} \cdot \text{Free}
\]

\[
\text{union} : \text{Bag} (\text{Bag} A) \to \text{Bag} A
\]

\[
\text{single} : A \to \text{Bag} A
\]

which justifies the use of comprehension notation

\[
\{ f \ a \ b \mid a \leftarrow x, b \leftarrow g \ a \}
\]

and its equational properties.

In fact, any adjunction \(L \to R\) yields a monad \((T, \mu, \eta)\) on \(D\), where

\[
T = R \cdot L
\]

\[
\mu A = R [\text{id}_A] L : T (T A) \to T A
\]

\[
\eta A = [\text{id}_A] : A \to T A
\]
11. Maps

Database indexes are essentially maps $\text{Map } K V = V^K$. Maps $(-)^K$ from K form a monad (the Reader monad in Haskell), so arise from an adjunction.

The *laws of exponents* follow from this adjunction, and from those for products and coproducts:

- $\text{Map } 0 V \approx 1$
- $\text{Map } 1 V \approx V$
- $\text{Map } (K_1 + K_2) V \approx \text{Map } K_1 V \times \text{Map } K_2 V$
- $\text{Map } (K_1 \times K_2) V \approx \text{Map } K_1 (\text{Map } K_2 V)$
- $\text{Map } K 1 \approx 1$
- $\text{Map } K (V_1 \times V_2) \approx \text{Map } K V_1 \times \text{Map } K V_2 : \text{merge}$

—ie *merge* is right-to-left half of the latter iso:

$\text{merge} : \text{Map } K V_1 \times \text{Map } K V_2 \rightarrow \text{Map } K (V_1 \times V_2)$
12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

\[
\text{Rel} \xrightarrow{\downarrow} \text{Set} \quad \text{where } J \text{ embeds, and } E R : A \to \text{Set } B \text{ for } R : A \sim B.
\]

Moreover, the correspondence remains valid for bags:

\[
\text{index} : \text{Bag } (K \times V) \simeq \text{Map } K (\text{Bag } V)
\]

Together, \textit{index} and \textit{merge} give efficient relational joins:

\[
x f \bowtie_g y = \text{flatten} (\text{Map } K \circ p (\text{merge} (\text{groupBy } f x, \text{groupBy } g y)))
\]

\[
\text{groupBy} : \text{Eq } K \Rightarrow (V \to K) \to \text{Bag } V \to \text{Map } K (\text{Bag } V)
\]

\[
\text{flatten} : \text{Map } K (\text{Bag } V) \to \text{Bag } V
\]

expressible also via \textit{comprehensive comprehensions}
13. Finiteness

A catch:

- being *finite* is important, for aggregations
- begin a *monad* is important, for comprehensions
- *finite bags* form a monad (as above)
- *maps* form a monad, but *finite maps* do not: the unit

\[\eta \; a = (\lambda k \to a) : A \to \text{Map} \; K \; A \]

generally yields an infinite map.

How to reconcile finiteness of maps with being a monad?
14. Graded monads

Grading (indexing, parametrizing) a monad by a monoid: an indexed family of endofunctors that collectively behave like a monad.

For monoid \(M = (M, \otimes, e) \), the \(M \)-graded monad \((T, \mu, \eta) \) is a family \(T_m \) of endofunctors indexed by \(m : M \), with

\[
\mu X : T_m (T_n X) \to T_{m \otimes n} X \\
\eta X : X \to T_e X
\]

satisfying the usual laws. These too arise from adjunctions (even though \(T \) itself is not an endofunctor!).

For example, think of finite vectors, indexed by length.

We use the monoid \((\mathbb{K}^*, +, \langle \rangle) \) of finite sequences of finite key types \(\mathbb{K} \).
15. Query transformations

These can now all be shown by equational reasoning:

\[\pi_i \cdot \pi_j = \pi_i \quad -- \text{when } i \cdot j = i \]
\[\sigma_p \cdot \pi_i = \pi_i \cdot \sigma_p \quad -- \text{when } p \cdot i = p \]
\[\langle M \rangle \cdot \text{Bag } f \cdot \pi_i = \langle M \rangle \cdot \text{Bag } (f \cdot i) \]
\[\langle M \rangle \cdot \text{Bag } f \cdot \sigma_p = \langle M \rangle \cdot \text{Bag } (\lambda a \rightarrow \text{if } p a \text{ then } f a \text{ else } \varepsilon) \]
\[\chi f \otimes g y = \text{Bag } \text{swap } (y \otimes_f \chi) \]
\[(\chi f \otimes g y) \cdot (g \cdot \text{snd}) \otimes_h z = \text{Bag } \text{assoc } (\chi f \otimes (g \cdot \text{fst}) \cdot (y \otimes_h z)) \]
\[\pi_{i \otimes_j} (\chi f \otimes g y) = \pi_i \chi f' \otimes g' \cdot \pi_j y \quad -- \text{when } f a = g b \iff f' (i a) = g' (j b) \]
\[\sigma_p (\chi f \otimes g y) = \sigma_q \chi f \otimes g \cdot \sigma_r y \quad -- \text{when } p (a, b) = q a \land r b \]

for monoid \(M = (M, \otimes, \varepsilon) \).
16. Summary

- *monad comprehensions* for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing and graded monads
- calculating *query transformations*

Thanks to EPSRC *Unifying Theories of Generic Programming* for funding.
transformations in relational algebra come from adjunctions