
Enforcing the Use of API Functions in Linux Code

Julia Lawall

Joint work with
Gilles Muller (EMN/INRIA) and Nicolas Palix (DIKU)

April 16, 2009

1



Our context: bug finding

Traditional automatic bug-finding tools:

I Start with patterns, either canned or user-provided.

I Scan code for matches.

I Report matches as possible bugs.

Examples:

I Memory leaks.

I Null pointer dereferences.

I Confusion of boolean and bit values (!x&y).

I etc.

2



Our bug-finding tool

Coccinelle: program matching and transformation for C code.

Guiding principle:

I Matching/transformation rules should look like C code.

I Or, more precisely, like C code patches.

Example:

@@
expression E;
constant C;
@@
- !E & C
+ !(E & C)

3



A more complex example

Memory leaks:

@r exists@

local idexpression x; statement S;

expression E; identifier f; position p1,p2;

@@

x@p1 = kmalloc(...);

...

if (x == NULL) S

<... when != x

when != if (...) <+...x...+>

x->f = E

...>

(

return <+...x...+>;

|

return@p2 ...;

)

But are these the bugs we should be looking for, or is there
something else?

4



Our (very preliminary) contribution

Observation: Linux header files define many small API functions.

I These functions raise the abstraction level, and impose type
safety.

I Sometimes these functions are used, sometimes not.

Goal:

I Find header-file functions that follow a common pattern.

I Generate bug-finding rules based on header-file function
definitions.

5



Example

Some constant definitions:

#define LM_ST_UNLOCKED 0

#define LM_ST_EXCLUSIVE 1

#define LM_ST_DEFERRED 2

#define LM_ST_SHARED 3

Later, in the same file, some function definitions:

static inline int gfs2_glock_is_held_excl(struct gfs2_glock *gl) {

return gl->gl_state == LM_ST_EXCLUSIVE;

}

static inline int gfs2_glock_is_held_dfrd(struct gfs2_glock *gl) {

return gl->gl_state == LM_ST_DEFERRED;

}

static inline int gfs2_glock_is_held_shrd(struct gfs2_glock *gl) {

return gl->gl_state == LM_ST_SHARED;

}

6



Use and non-use of these functions

A use:

if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))

goto out;

A non-use:

BUG_ON(gl->gl_state != LM_ST_EXCLUSIVE);

7



Using Coccinelle to impose the use of the API

A semantic patch to convert non-uses to uses:

@@

struct gfs2_glock *gl;

@@

(

- gl->gl_state == LM_ST_EXCLUSIVE

+ gfs2_glock_is_held_excl(gl)

|

- gl->gl_state == LM_ST_DEFERRED

+ gfs2_glock_is_held_dfrd(gl)

|

- gl->gl_state == LM_ST_SHARED

+ gfs2_glock_is_held_shrd(gl)

)

8



Using Coccinelle to impose the use of the API

Another semantic patch to convert non-uses to uses:

@@

struct gfs2_glock *gl;

@@

(

- gl->gl_state != LM_ST_EXCLUSIVE

+ !gfs2_glock_is_held_excl(gl)

|

- gl->gl_state != LM_ST_DEFERRED

+ !gfs2_glock_is_held_dfrd(gl)

|

- gl->gl_state != LM_ST_SHARED

+ !gfs2_glock_is_held_shrd(gl)

)

9



Results

excl dfrd shrd

Original calls 1 0 0
Introduced pos calls 2 1 1
Introduced neg calls 2 0 0

Remaining references to the gl state field
2 initialization
4 comparison to another expression
10 comparison to a constant (LM ST UNLOCKED)
3 other

Remaining references to the LM ST constants
92 as function arguments
13 as case labels
12 as assignments
30 as comparisons

10



Assessment

This is only one example of a common phenomenon.

We might notice such inconsistencies in the use of constants and
functions and address them, by hand or by writing rules.

But it would be better to fix them up front, without having to
notice them one by one.

Goal: Automatically create rules to enforce API usage.

I Or perhaps automatically create rules to eliminate APIs.

11



Issues

Different kinds of functions can be used in different kinds of ways.

A potential usage site does not always have the same form as the
function definition.

I For our equality tests, the potential usage site does not
include return.

There may be many kinds of potential usage sites for a given
function.

I In our examples, both equalities and inequalities are potential
usage sites.

Solution: The user describes a class of functions, and a usage that
is common to that class.

12



Example:

A rule to find a kind of small function definition:

@@ identifier f; expression E;

constant C; parameter list ARGS; @@

f(ARGS) { return (E == C); }

A matching function definition

static inline int gfs2_glock_is_held_excl(struct gfs2_glock *gl) {

return gl->gl_state == LM_ST_EXCLUSIVE;

}

A rule we hope to generate:

@@ struct gfs2_glock *gl; @@

- gl->gl_state == LM_ST_EXCLUSIVE

+ gfs2_glock_is_held_excl(gl)

13



Generative rule notation

@pat@

identifier f; expression E;

constant C; parameter list ARGS;

@@

f(ARGS) { return (E == C); }

@generative@

identifier pat.f; expression pat.E;

constant pat.C; expression list pat.ARGS;

@@

(

- (E == C)

+ f(ARGS)

|

- (E != C)

+ !f(ARGS)

)

14



Issues

The generated rule should not be as generic as the generative rule

I E == C is too generic.

The generated rule should not be as specific as the matched
function definition

I gl->gl state == LM ST EXCLUSIVE is too specific.

Solution: The metavariables should be the matches function’s
parameters.

I These are the point of variability of the matched function’s
behavior.

15



Generation process

I Match a function definition.

I Generate a rule having:

– Metavariables: The parameters of the matched functions.
– Body: The body of the generative rule instantiated according

to the generative rule’s metavariable bindings.

I Also generate:

– A rule to check that the header file is included.
– A rule to prevent transforming the code in the header-file

definition into a call to itself.

Walid has proposed a more elegant generation process relying on
metavariables that are subdivided into contexts.

16



Example

@pat@

identifier f; expression E;

constant C; parameter list ARGS;

@@

f(ARGS) { return (E == C); }

with metavariable bindings:

I E ≡ gl->gl state

I C ≡ LM ST EXCLUSIVE

I f ≡ gfs2 glock is held excl

I ARGS ≡ struct gfs2 glock *gl

@generative@

identifier pat.f; expression pat.E;

constant pat.C; expression list pat.ARGS;

@@

(

- (E == C)

+ f(args)

|

- (E != C)

+ f(ARGS)

)

17



Example

@pat@

identifier f; expression E;

constant C; parameter list ARGS;

@@

f(ARGS) { return (E == C); }

with metavariable bindings:

I E ≡ gl->gl state

I C ≡ LM ST EXCLUSIVE

I f ≡ gfs2 glock is held excl

I ARGS ≡ struct gfs2 glock *gl

@generative@

identifier pat.f; expression pat.E;

constant pat.C; expression list pat.ARGS;

@@

(

- (gl->gl_state == LM_ST_EXCLUSIVE)

+ gfs2_glock_is_held_excl(gl)

|

- (gl->gl_state != LM_ST_EXCLUSIVE)

+ !gfs2_glock_is_held_excl(gl)

)

18



Example

@pat@

identifier f; expression E;

constant C; parameter list ARGS;

@@

f(ARGS) { return (E == C); }

with metavariable bindings:

I E ≡ gl->gl state

I C ≡ LM ST EXCLUSIVE

I f ≡ gfs2 glock is held excl

I ARGS ≡ struct gfs2 glock *gl

@@

struct gfs2_glock *gl;

constant pat.C; expression list pat.ARGS;

@@

(

- (gl->gl_state == LM_ST_EXCLUSIVE)

+ gfs2_glock_is_held_excl(gl)

|

- (gl->gl_state != LM_ST_EXCLUSIVE)

+ !gfs2_glock_is_held_excl(gl)

)

19



Results

I 125 small functions found in 82 files.

I Non-use sites found for 13 functions.

I 26 non-use sites found in 18 files.

20



Applicability

2.64%

16.53%

0.77%22.04%

3.76%

0.08%

3.49%

1.65%

2.50%

1.86%

2.50%

23.49%

18.68%

assign_field
return_error
return_ident
return_call
return_field
return_bitor
return_bitand
return_eq
return_conj
return_disj
return_cond
return_exp
call

21



A larger case study

USB chapter 9 iterface:

I Defined in include/linux/usb.h, which is included in over
300 .c files.

I API initially very little used.

I A Linux developer submited a patch that introduced a few
uses of this API, which caught our attention.

Function types:

I Call another function.

I Initialize a structure field.

I Return the result of an equality test.

I Return the result of an arbitrary expression.

22



Results

For four USB chapter 9 functions (one in each category):

current needed calls % calls
calls calls updated updated

usb set intfdata 303 4 4 100%
usb mark last busy 15 6 6 100%
usb endpoint xfer isoc 8 11 3 27%
usb endpoint is isoc in 14 1 0 0%

23



Issues

Rule ordering

I We follow the definition order in the header file.

The use of constants rather than macros

I We create a matching rule that finds the definition associated
with a matched macro use

Rule granularity

I The generative rules express variants at the level of the
matched metavariable, not their subterms

Lack of type information

24



Conclusions

I Linux provides many small functions that raise the level of
abstraction and improve type safety

I But these functions are not used systematically

I We propose an approach to automatically address this problem

I In manually checking our usb results, we found one bug in
Linux.

25



Future work

I Consider Walid’s more elegant suggestion

I Assess the approach more thoroughly on Linux

I Consider other software: OpenSSL? VLC? Wine?

http://www.x-info.emn.fr/coccinelle

26


