
WG 2.11 Meeting
Halmstad Sweden

2012

Bootstrapping Compiler Generators
from Partial Evaluators

Robert Glück
University of Copenhagen

Today’s Plan

Part 1: Theory
•  Brief review of partial evaluation
•  The new bootstrapping technique

Part 2: Practice
•  An online compiler generator for recursive Flowchart
•  Experimental validation & operational properties

2

This talk reports:
•  Bootstrapping can be a viable alternative

to the 3rd Futamura projection.

Programs as Data Objects

Build programs that treat programs as data objects:
•  Analyze, transform & generate programs
•  Manipulate programs by means of programs

Three basic operations on programs: [Glück Klimov’94]

1.  Specialize: e.g. partial evaluation
2.  Invert: e.g. reversible computation
3.  Compose: e.g. deforestation, slicing

!  Programs are semantically the most
complex data structure in the computer! 3

Brief Review of Partial Evaluation

•  Partial evaluation: technique to specialize programs.

•  Partial evaluators were designed & implemented.
Scheme, Prolog, ML, C, Fortran, Java, ...

•  Literature: standard book [JonesGomardSestoft’93].
•  Most intense research phase from mid 80ies to end 90ies.
•  Cornerstone are the 3 Futamura projections [Futamura’71].
 4

More formally: What is a Specializer?

Program specialization:
 r = [s](p,x)
 [r] y = [p](x,y)

Characteristic equation:
 [[s](p,x)] y = [p](x,y)

Note: specializer s is itself a two-argument program.

5

2 stages

Terminology:
s ... specializer
r ... residual program

1 stage

What is a Compiler Generator?

Program staging:
 g = [cog] p
 [[g] x] y = [p](x,y)

Characteristic equation:
 [[[cog] p] x] y = [p](x,y)

Note: program p staged wrt. implicit division: x known before y.
cog is a program-generator generator.

6

Terminology:
cog ... compiler generator
g ... generating extension

1 stage

3 stages

Ershov’77

New: Staging a Specializer

Characteristic equation:
 [[[cog] p] x] y = [p](x,y) = out

Special case:

 [[[cog] s] s] s = [s](s,s) = cog’’’

7

1 stage

3rd Futamura projection
(double self-application)

3 stages

bootstrapping

Futamura’71
Turchin’77, Ershov’78

Jones et al.’85

Klimov Romanenko’87
Glück Klimov’95, Glück’09

this talk
theory
practice

Full Bootstrapping

Summary:
 [[[cog] s] s] s = [s](s,s) = cog’’’

Full bootstrapping:
1.  cog’ = [cog] s
2.  cog’’ = [cog’] s
3.  cog’’’ = [cog’’] s

4.  cog’’’ = [cog’’’] s self-generation

8

3rd Futamura projection bootstrapping

Partial Bootstrapping

Two important properties:

1. Last two cog’’ and cog’’’ are functionally equivalent:
 [cog’’] = [cog’’’]

2.  All three cog’, cog’’, cog’’’ produce functionally
equivalent generating extensions:
 [[cog’] p] = [[cog’’] p] = [[cog’’’] p]

! "It is not always necessary to perform a full bootstrap.
 Q: Can we bootstrap compiler generators in 1 or 2 steps

that are “good enough” for practical use ?
10 11

Properties of the Bootstrapping Technique

functionally equivalent
compiler generators

self-generation

Glück’09

produce functionally equivalent
generating extensions

3rd FMP

Bootstrapping vs. Futamura Projections

•  Futamura’s technique: “all-or-nothing”: unless double
self-application is successful, no compiler generator.

•  Bootstrapping: can stop generation process at any
step (1,2,3) and obtain a working compiler generator.

 Three bootstrapping steps:
–  1 step: specializer need not be self-applicable (e.g. online);

source language need not be Turing-complete;
an advantage for DSL (e.g. video device drivers);

–  2 steps: no loss of transformation strength.
–  3 steps: alternative to Futamura’s technique [Futamura’71,‘73].

12 13

How to Get Started?

2nd Part of Talk

How to get started?

Chicken-and-Egg Dilemma

Two ways to obtain the initial compiler generator:

1.  Write cog by hand.
[Beckman et al.’75, Holst Launchburg’91, Birkedal Welinder’94, ...]

2.  Generate cog by specializer (3rd Futamura projection).
Requires a self-applicable program specializer.
[Futamura’71, Jones et al.’85, Romaneko’90, ...]

 14 15

constant assignment: static n

Ackermann Function in Flowchart

polyvariant call

Ershov’78

m=static n=dynamic
Division:

Three Block Generators

16

cog

Generating a Generating Extension

Ackermann
program

Ackermann
generating extension

online compiler
generator for FCL

19

genext

Running the Generating Extension

Static value for m

Residual program

Ackermann
generating extension

21

Online Compiler Generator in FCL

3 pages of pretty-printed Flowchart program text

Self-compiler: Compiler generator:

Compiler Generator for Flowchart

22 See paper for formal definition. Glück’12 32

Bootstrapping

Last Part of Talk

3-Step Bootstrapping

33

mix

mix

mix

mix

mix

mix

Gomard-Jones’91

cog

Glück’12

1.8x faster
93.7 : 171.3

2.1x faster
82.1 : 171.3

Run times: CPU+GC in ms

2.5x faster
161.1 : 406.2

 onmix

 onmix

 onmix

Experimental validation of bootstrapping:
Reproduces the Gomard-Jones mix-cog [1991], but faster.

Reproduces the onmix-cog [G’12], but faster.

Self-Generation

34

Partial correctness test: Perfect reproduction.
Time for self-generation also indicates efficiency.
Desirable: self-generation ! 3x fast than 3rd FMP.

mix

mix

mix

 onmix

 onmix

mix

mix

mix

 onmix

mix

 onmix

5.1x faster
33.4 : 171.3

6.5x faster
62.5 : 406.6

2-Step Bootstrapping

35

All 2nd-step compiler generators practically “good enough”:
No compromise in terms of speed.

Size up to twice as large.

mix 35.9

 mix 35.9

mix 33.4

mix 33.4

Functionally
equivalent

p 12.4

p 12.4

target

1-Step Bootstrapping

36

Are 1st-step compiler generators “good enough” ?
Depends on initial cog: scenario w/advanced initial cog.

Advantage: no self-application of new specializer required.

int 44.4

int 44.4

int 37.2

MP-to-FCL-compilers:
functionally equivalent

 cog’’

 cog’

 cog’’’

MP-interpreter: Sestoft’86, Mogensen’88

37

Main Results

1.  Standard PE is strong enough for bootstrapping.
2.  Bootstrapping is a viable alternative to the 3.FMP.

3.  3-step bootstrapping produces the exact same
programs and can be faster than 3.FMP.

4.  1 and 2-step can produce “good enough” compiler
generators (not possible with 3.FMP).

5.  Reproduced the 1991-Gomard-Jones cog, but faster.

 Q: Can this lead to stronger generating extensions
than those know from PE?
 Q: Try technique to produce DSL-cogs:
How to write (online) DSL-specializers? 38

References

Bootstrapping compiler generators:
•  Glück R., Bootstrapping compiler generators from partial evaluators.

Clarke E.M., et al. (eds.), Perspectives of System Informatics.
Proceedings. LNCS 7162, 2012.

Self-applicable online partial evaluation:
•  Glück R., A self-applicable online partial evaluator for recursive

flowchart languages. Software - Practice and Experience, 42(6), 2012.

Self-generating specializers:
•  Glück R., Self-generating program specializers.

Information Processing Letters, 110(17), 2010.

