

The University of Texas at Austin

Slice, Partition and Reforest
for

Data Access and Distribution

William Cook
with

Eli Tilevich, Yang Jiao, Virginia Tech
Ali Ibrahim, Ben Wiedermann, UT Austin

IFIP WG 2.11 April, 2009

The University of Texas at Austin

Let's reinvent
Remote

Procedure
Calls

The University of Texas at Austin

1. Clean interfaces
– Don't have to design differently for distribution

2. Latency
– As few communications as possible

3 to 10 round-trips per second

– Clear performance model

3. Simple memory model
– What about remote pointers?

4. Control partial failures

5. Stateless servers for scalability

6. Simple programming model
– Compositional

The University of Texas at Austin

Clean Service Interface

interface Music {
 Album[] getAlbums();
 Album getAlbum(String name);
}

interface Album {
 String getTitle();
 void play();
 int rating();
 void merge(Album other);
}

We could also use ML-
style module to define
remote service interface

The University of Texas at Austin

Latency?

● Simple procedure call
print(album.getTitle());

The University of Texas at Austin

Latency?

● Simple procedure call
print(album.getTitle());

● But what about multiple calls?
print(album.getTitle());
print(album.rating());

● RPC model gives two round trips
– Can we do this in one round trip?

– Alternative is asynchronous calls... more later

The University of Texas at Austin

Remote Batch Invocation (RBI)

● New statement: batch block
batch (album) { // album is service root
 print(@album.getTitle());
 print(@album.rating());
}

● Semantics: @remote parts executed first
● Clear performance model

– Executes all remote actions in one round-trip

● Simple programming model
– Reduces partial failures

The University of Texas at Austin

Partition

● Partition batch into two parts, remote and local:
remote computation:
 data.p1 = album.getTitle();
 data.p2 = album.rating();
local computation:

print(data.p1);
print(data.p2);

● Data is transfered in bulk
● Related to

– remote evaluation

– binding time analysis (binding location analysis?)

The University of Texas at Austin

What else can go in a batch?

● Composition
batch (r) { @r.foo().bar().getName(); }

● Conditions
batch (a) { if (@a.rating() > 50) @a.play(); }

● Loops
batch (music) {
 for (Album a : @music.getAlbums())
 if (a.rating() > 50)
 print(@a.getName() + “: ” + @a.rating());
}

● Exceptions work too

Asynchrony does not help!

The University of Texas at Austin

Partitioning Loops
● Partition batch into two parts, remote and local:

remote computation:
 for (Album a : music.getAlbums()) {
 item = data.add();
 item.p1 = a.getName();
 item.p2 = a.rating());

}
// local computation

for (item : data.iterations())
 print(item.p1 + “: ” + item.p2);

● Data is a list of pairs
● Runs the loop twice (same for conditions)

The University of Texas at Austin

What about the data?

A new idea:

Reforestation

Introduce intermediate data structures

The University of Texas at Austin

Deforestation [Wadler 89]

● Remove intermediate data structures (trees)
sum (square (1 `to` 5))

● Deforested version
sum-square-interval(1, 5)

1,2,3,4,5 1,4,9,16,25 55square sumto1 5

55sum-square-interval1,5

The University of Texas at Austin

Reforestation

● Split program P(r) in two:
P(r) = P2(P1(r))

or
P(r) = let data = P1(r) in P2(data)

● Adding intermediate structure is efficient
because of remoteness

The University of Texas at Austin

Memory Model
● Only transfer primitive values!
● No proxies (remote pointers)

– Server is stateless, “service oriented”

– No distributed garbage collection

● Serialization by public interfaces
batch (remote) {
 RemoteSet r = @remote.makeSet();
 for (int elem : localSet().items())
 @r.add(elem);

– Illegal: RemoteSet r = localSet;

– Need reusable helper functions/coercions

The University of Texas at Austin

Evaluation
RMI
CORBA

Web
Services

Remote Batch
Invocation

Clean
Interfaces

Good Bad Good

Latency Bad Good Good

Memory
model

Bad Good Good

Stateless No Yes Yes

Partial Failure Bad Better Better

Programming
Model

Good Bad Good... but...

The University of Texas at Austin

Re-ordering

● Statements are reordered! @'s run first
batch (remote) {
 local.update(@remote.get());
 @remote.set(local.get());
}

● Partitions to:
remote execution: {
 data = remote.get();
 remote.set(local.get()); // local.get() happens first!
}
// local execution
local.update(data);

The University of Texas at Austin

Generalized Batches

● Parameterize by batch handler
� batch RMI (remoteObject) { … }

� batch WebService (service) { … }

 batch SQL (db) { … }

batch GPU (gpu) { }

batch PartialEval (s) { … }

 batch H (r) B = B2(H <B1>(r))

● Batch provides generalized program partitioning
and reforestation capability

The University of Texas at Austin

Web Services: Document = Batch
Amazon Web Service

<ItemLookup>
<AWSAccessKeyId>XYZ</AWSAccessKeyId>
<Request>
 <ItemIds>
 <ItemId>1</ItemId>
 <ItemId>2</ItemId>
 </ItemIds>
 <IdType>ASIN</ItemIdType>
 <ResponseGroup>SalesRank</ResponseGroup>
 <ResponseGroup>Images</ResponseGroup>
</Request>
</ItemLookup>

interface Amazon {
 void login(String awsKey);
 Item getItem(String ASIN);
 ...
}
interface Item {
 int getSalesRank();
 Image getSmallImage();
 ...
}

// calls specified in document
aws.login("XYZ");
Item a = aws.getItem("1");
Item b = aws.getItem("2");
return new Object[] {
 a.getSalesRank(), a.getSmallImage(),
 b.getSalesRank(), b.getSmallImage() }

The University of Texas at Austin

Batching Database Access
batch SQL (Database db : dbService) {
 for (Album album : @db.getAlbums())
 if (@(album.rating() > 50))
 System.out.println("Played: " + @album.getTitle());
}

DbResults data = dbService.executeQuery(
 "select title from albums where rating > 4");
for (item : data.items())
 System.out.println("Played: " + item.getTitle());

● Also updates, aggregation and grouping

The University of Texas at Austin

Maier 1987

“Whatever the database programming
model, it must allow complex, data-
intensive operations to be picked out of
programs for execution by the storage
manager, rather than forcing a record-at-
a-time interface.”

The University of Texas at Austin

Related work

● Automatic program partitioning
● Remote evaluation (mobile code)
● Implicit batching
● Asynchronous remote invocations
● Transactions (batch/atomic)

The University of Texas at Austin

Contributions

● New statement form:
batch C (r) { body }

● Interesting semantics, general applications
– Partition

– Reforest

● Unifies distribution and data access
– Can be asynchronous too

