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Remote 
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Calls
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1. Clean interfaces
– Don't have to design differently for distribution

2. Latency
– As few communications as possible

3 to 10 round-trips per second

– Clear performance model

3. Simple memory model
– What about remote pointers?

4. Control partial failures

5. Stateless servers for scalability

6. Simple programming model
– Compositional
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Clean Service Interface

interface Music {
  Album[] getAlbums();
  Album getAlbum(String name);
}

interface Album {
  String getTitle();
  void play();
  int rating();
  void merge(Album other);
}

We could also use ML-
style module to define 
remote service interface



 
 

The University of Texas at Austin

Latency?

● Simple procedure call
print( album.getTitle() );
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Latency?

● Simple procedure call
print( album.getTitle() );

● But what about multiple calls?
print( album.getTitle() );
print( album.rating() );

● RPC model gives two round trips
– Can we do this in one round trip?

– Alternative is asynchronous calls... more later
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Remote Batch Invocation (RBI)

● New statement: batch block
batch (album) {  // album is service root
    print( @album.getTitle() );
    print( @album.rating() );
}

● Semantics: @remote parts executed first
● Clear performance model

– Executes all remote actions in one round-trip

● Simple programming model
– Reduces partial failures
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Partition

● Partition batch into two parts, remote and local: 
remote computation:
    data.p1 = album.getTitle();
    data.p2 = album.rating();
local computation:

print( data.p1 );
print( data.p2 );

● Data is transfered in bulk
● Related to

– remote evaluation

– binding time analysis (binding location analysis?)
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What else can go in a batch?

● Composition
batch (r) { @r.foo().bar().getName(); }

● Conditions
batch (a) { if (@a.rating() > 50) @a.play(); }

● Loops
batch (music) {
    for (Album a : @music.getAlbums() )
      if (a.rating() > 50)
        print( @a.getName() + “: ” + @a.rating() );
}

● Exceptions work too

Asynchrony does not help!
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Partitioning Loops
● Partition batch into two parts, remote and local: 

remote computation:
    for (Album a : music.getAlbums() ) {
        item = data.add();
        item.p1 = a.getName();
        item.p2 = a.rating() );

}
// local computation

for ( item : data.iterations() )
    print( item.p1 + “: ” + item.p2 );

● Data is a list of pairs
● Runs the loop twice (same for conditions)
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What about the data?

A new idea:

Reforestation

Introduce intermediate data structures
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Deforestation [Wadler 89]

● Remove intermediate data structures (trees)
sum (square (1 `to` 5))

● Deforested version
sum-square-interval(1, 5)

1,2,3,4,5 1,4,9,16,25 55square sumto1   5

55sum-square-interval1,5
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Reforestation

● Split program P(r) in two:
P(r) = P2(P1(r))

or
P(r) = let data = P1(r)  in  P2(data)

● Adding intermediate structure is efficient 
because of remoteness
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Memory Model
● Only transfer primitive values!
● No proxies (remote pointers)

– Server is stateless, “service oriented”

– No distributed garbage collection

● Serialization by public interfaces
batch (remote) {
    RemoteSet r = @remote.makeSet();
    for (int elem : localSet().items() )
        @r.add( elem );
    ....

– Illegal:  RemoteSet r = localSet; 

– Need reusable helper functions/coercions
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Evaluation
RMI
CORBA

Web 
Services

Remote Batch 
Invocation

Clean 
Interfaces

Good Bad Good

Latency Bad Good Good

Memory 
model

Bad Good Good

Stateless No Yes Yes

Partial Failure Bad Better Better

Programming 
Model

Good Bad Good... but...
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Re-ordering

● Statements are reordered!  @'s run first
batch (remote) {
    local.update( @remote.get() );
    @remote.set( local.get() );
}

● Partitions to:
remote execution: {
    data = remote.get();
    remote.set( local.get() );  // local.get() happens first!
}
// local execution
local.update( data );
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Generalized Batches

● Parameterize by batch handler
� batch RMI (remoteObject) { … }

� batch WebService (service) { … }

 batch SQL (db) { … }

batch GPU (gpu) { .... }

batch PartialEval (s) { … }

 batch H (r) B   =   B2(H <B1>(r))

● Batch provides generalized program partitioning 
and reforestation capability 
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Web Services: Document = Batch
Amazon Web Service

<ItemLookup>
<AWSAccessKeyId>XYZ</AWSAccessKeyId>
<Request>
  <ItemIds>
  <ItemId>1</ItemId>
  <ItemId>2</ItemId>
  </ItemIds>
  <IdType>ASIN</ItemIdType>
  <ResponseGroup>SalesRank</ResponseGroup>
  <ResponseGroup>Images</ResponseGroup>
</Request>
</ItemLookup>

interface Amazon {
  void login(String awsKey);
  Item getItem(String ASIN);
  ...
}
interface Item {
  int getSalesRank();
  Image getSmallImage();
  ...
}

// calls specified in document
aws.login("XYZ");
Item a = aws.getItem("1");
Item b = aws.getItem("2");
return new Object[] {
  a.getSalesRank(), a.getSmallImage(),
  b.getSalesRank(), b.getSmallImage()    }
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Batching Database Access
batch SQL (Database db : dbService) {
  for (Album album : @db.getAlbums())
    if (@(album.rating() > 50))
      System.out.println("Played: " + @album.getTitle());
}

DbResults data = dbService.executeQuery(
              "select title from albums where rating > 4");
for (item : data.items())
  System.out.println("Played: " + item.getTitle());

● Also updates, aggregation and grouping
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Maier 1987

“Whatever the database programming 
model, it must allow complex, data-
intensive operations to be picked out of 
programs for execution by the storage 
manager, rather than forcing a record-at-
a-time interface.”
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Related work

● Automatic program partitioning
● Remote evaluation (mobile code)
● Implicit batching
● Asynchronous remote invocations
● Transactions (batch/atomic)
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Contributions

● New statement form:
batch C (r) { body }

● Interesting semantics, general applications
– Partition

– Reforest

● Unifies distribution and data access
– Can be asynchronous too


