
 Anthony M. Sloane Lennart Kats Eelco Visser
 Macquarie University Delft University of Technology

A Pure Object-Oriented Embedding of Attribute
Grammars

Supported by NWO projects 638.001.610, MoDSE: Model-Driven Software Evolution,
612.063.512, TFA: Transformations for Abstractions, and 040.11.001, Combining Attribute
Grammars and Term Rewriting for Programming Abstractions.

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

A black-box language processor generation system that integrates
off-the-shelf tools. Under development since the late 1980s by groups
at Colorado, Paderborn and Macquarie.

Many different DSLs as specification notations

Lots of generators, some custom-built and some off-the-shelf

A complex integration problem, both at the specification level but
also at the generator level

A large library of reusable code and specifications

High-level execution monitoring in terms of domain model

The Eli System

2

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Further information about Eli

Generating Software from Specifications, Uwe Kastens, Anthony M.
Sloane, and William M. Waite, Jones and Bartlett, 2007

which includes

short and long case studies,

coverage of "peripheral" topics: specification structure,
manufacturing and execution monitoring

Download:

http://sourceforge.net/projects/eli-project

3 A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

What Now?

Report of a workshop on Future Directions of Programming
Languages [1995]:

Our view is that many special-purpose languages are far more special
than their purpose requires. They are often designed with just the right
primitives and "first-order" syntax, but with an overarching language
structure that is feeble and ad hoc.

as reported in [Kamin96]

Explore trade-offs between specialised design of a new language and
the power of a general-purpose language

Use specialised notations only where general purpose notations are
not appropriate

4

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

The Kiama Library

An experiment in embedding language processing formalisms in the
Scala programming language.

Currently includes:

packrat parsing combinators

strategy-based term rewriting

dynamically-scheduled attribute grammars

First public release coming soon.

http://plrg.science.mq.edu.au/projects/show/kiama

5 A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

The Kiama Library

An experiment in embedding language processing paradigms in the
Scala programming language.

Currently includes:

packrat parsing combinators

strategy-based term rewriting

dynamically-scheduled attribute grammars

First public release coming soon.

http://plrg.science.mq.edu.au/projects/show/kiama

6

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Scala Programming Language

Odersky et al, Programming Methods Laboratory, EPFL, Switzerland

Main characteristics:

object-oriented at core with functional features

statically typed, local type inference

scalable: scripting to large system development

runs on JVM, interoperable with Java

7 A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Talk Outline

Review of attribute grammars and their implementation.

Examples of typical attribute grammars written using Kiama:

repmin

variable liveness.

An overview of the Kiama attribute grammar implementation.

Discussion, including:

comparison of a Kiama attribute grammar with a JastAdd
equivalent.

8

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Attribute Grammars

Attributes are properties of tree nodes.

Attribute equations associated with context-free grammar
productions describe how attribute values are related to other
attribute values.

A declarative formalism from which evaluation strategies can be
automatically determined.

Static attribute scheduling: determine at generation time a tree
traversal strategy that will enable the attributes to be evaluated in an
appropriate order.

Dynamic attribute scheduling: evaluate only those attributes that are
needed to compute a property of interest.

9 A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Repmin

10

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Repmin

11 A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Repmin : tree structure

abstract class Tree extends Attributable

case class Pair (left : Tree, right : Tree) extends Tree

case class Leaf (value : Int) extends Tree

val t = Pair (Leaf (3), Pair (Leaf (1), Leaf (10)))

12

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Repmin : local and global minima

val locmin : Tree ==> Int =
 attr {
 case Pair (l, r) => (l->locmin) min (r->locmin)
 case Leaf (v) => v
 }

val globmin : Tree ==> Int =
 attr {
 case t if t isRoot => t->locmin
 case t => t.parent[Tree]->globmin
 }

13 A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Repmin : result tree

val repmin : Tree ==> Tree =
 attr {
 case Pair (l, r) => Pair (l->repmin, r->repmin)
 case t : Leaf => Leaf (t->globmin)
 }

14

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Variable Liveness

15

In Out

y = v; {v, w} {v, w, y}

z = y; {v, w, y} {v, w}

x = v; {v, w} {v, w, x}

while (x) { {v, w, x} {v, w, x}

 x = w; {v, w} {v, w}

 x = v; {v, w} {v, w, x}

}

return x; {x}

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Liveness : tree structure

type Var = String

abstract class Stm extends Attributable

case class Assign (left : Var, right : Var) extends Stm
case class While (cond : Var, body : Stm) extends Stm
case class If (cond : Var, tru : Stm, fls : Stm) extends Stm
case class Block (stms : Stm*) extends Stm
case class Return (ret : Var) extends Stm
case class Empty () extends Stm

16

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Liveness : control flow graph

17

y = v;

z = y;

x = v;

while (x) {

 x = w;

 x = v;

}

return x;

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Liveness : successor nodes

val succ : Stm ==> Set[Stm] =
 attr {
 case If (_, s1, s2) => Set (s1, s2)
 case t @ While (_, s) => t->following + s
 case Return (_) => Set ()
 case Block (s, _*) => Set (s)
 case s => s->following
 }

18

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Liveness : following nodes

val following : Stm ==> Set[Stm] =
 childAttr {
 case s => {
 case t @ While (_, _) => Set (t)
 case b @ Block (_*) if s isLast => b->following
 case Block (_*) => Set (s.next)
 case _ => Set ()
 }
 }

19 A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Liveness : variable uses and definitions

val uses : Stm ==> Set[String] =
 attr {
 case If (v, _, _) => Set (v)
 case While (v, _) => Set (v)
 case Assign (_, v) => Set (v)
 case Return (v) => Set (v)
 case _ => Set ()
 }

val defines : Stm ==> Set[String] =
 attr {
 case Assign (v, _) => Set (v)
 case _ => Set ()
 }

20

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Liveness : in and out variables

21

in(s) = uses(s) ∪ (out(s) \ defines(s))

out(s) =
⋃

x∈succ(s) in(x)

val in : Stm ==> Set[String] =
 circular (Set[String]()) {
 case s => uses (s) ++ (out (s) -- defines (s))
 }

val out : Stm ==> Set[String] =
 circular (Set[String]()) {
 case s => (s->succ) flatMap (in)
 }

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Liveness : in and out variables

22

in(s) = uses(s) ∪ (out(s) \ defines(s))

out(s) =
⋃

x∈succ(s) in(x)

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Implementation

Attributes

partial function objects from tree nodes to attribute values

maintain an object-local cache mapping tree nodes to value

Attribute value notation

sugar for a function call

tree -> a is the same as a (tree)

Tree structure is visible to attributes via node properties

an abstraction of the Scala tree structure

23 A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Tree structure

case class Upper (a : Lower, b : Lower*, c : Int,
 d : Option[Lower])

case class Lower (...)

24

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Tree structure

25

case class Upper (a : Lower, b : Lower*, c : Int,
 d : Option[Lower])

case class Lower (...)

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Cached attributes

def attr[T <: Attributable,U] (f : T ==> U) : T ==> U =
 new CachedAttribute (f)

26

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Cached attributes

def attr[T <: Attributable,U] (f : T ==> U) : T ==> U =
 new CachedAttribute (f)

class CachedAttribute[T,U] (f : T ==> U) extends (T ==> U) {
 val memo = new IdentityHashMap[T,Option[U]]
 def apply (t : T) : U =
 memo.get (t) match {
 case None => memo (t) = None
 val u = f (t)
 memo (t) = Some (u)
 u
 case Some (Some (u)) => u
 case Some (None) => error ("Cycle detected")
 }
}

27 A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Other kinds of attribute

Child ("inherited") attributes

As for regular attributes but also pattern match on parent node.

Circular attributes

Use the basic circular evaluation algorithm from "Circular
Reference Attributed Grammars - their Evaluation and
Applications", by Magnusson and Hedin from LDTA 2003.

Parameterised attributes

Uncached and constant attributes

28

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Discussion

Storage in tree nodes vs attribute-centred storage

Built-in laziness vs roll-your-own memoisation

Custom front-end vs general purpose language

Completeness checking vs sub-typing and sealed types

Context-free grammar vs GPL type system

Implicit composition vs explicit composition

Implementation size: around 230 lines of code

29 A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Preliminary Benchmark

Small experiment to validate expressibility and efficiency.

Encode an existing JastAdd picoJava specification

18 abstract grammar productions and 10 attributes
name analysis and inheritance cycle detection

Kiama implementation of same attribute equations has similar
performance to JastAdd-generated implementation running on same
JVM.

30

A Pure Object-Oriented Embedding of Attribute Grammars, Sloane, WG 2.11, April 2009

Conclusion

Kiama attribution library

lightweight, natural and easy to understand
competitive in expressiveness and reasonable performance

Scala

sweetspot combination of functional and object-oriented features,
enables a simple implementation

Future work

attribute kinds: collections, forwarding, ...
modular attribute definitions

31

