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CPS etc

1. Factorial

fact : Integer - Integer

fact O
fact n

Recursive.

1
nxfact (n—1)



Continuation-passing style

Introduce continuation as accumulating parameter:
fact;'n k = k (fact n)
Then calculate:

fact, : Integer - Integer

fact, n = fact,'n id where
fathE': Integer - (Integer - Integer) - Integer
fact; 0k =k 1
fact;'n k = fact; '(n — 1) (Am LCK{An x m))

Now tail-recursive, but higher-order.



Defunctionalize

The continuations aren’t arbitrary Integer - Integer functions:
always of the form (ax) - (bx) - - - - - (cx).

Data-refine this continuation to a list [a, b, ...,c]:

fact, : Integer - Integer
fact; n = factEn [1 where
facts" Integer — List Integer - Integer

fact5'0 k = product k
factBDn k = factBD(n — 1) (k+[n]

Tail-recursive, first order—but uses data structures.



Associativity

Further data-refine [a,b,...,c]J]toaxbx .. xc,.

fact, : Integer - Integer

fact, n = fact,’n 1 where
factf': Integer - Integer - Integer
fact, 0 k = k
fact,'n k = fact,'(n — 1) (k < n)

Data refinement valid by associativity.

Familiar: tail-recursive, first-order, only scalar data.

(This last step wouldn’t work for “subtractorial”.)

Nn,k:=N,1;

{invin>0 Lkixkn!'=N! }

while n 82 0 do
Nk:=n—1,kxn

end

{ k=N! }




2. Hutton’s Razor

Expressions with subtraction, which is not associative:

data Expr = Lit Integer | Diff Expr Expr
expr : Expr
expr = Diff (Diff (Lit 3) (Lit4)) (Lit5) --ie(3—4)—5

Evaluation: Diff

/ N\

eval : Expr - Integer

_ Diff Lit
eval (Lit n) =n
eval (Diff e e") = eval e —eval e ./ \ . \
Lit  Lit )
/ \

3 4
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CPS

eval, : EXxpr - Integer
eval, e = eval, e id where
evaIZE': Expr - (Integer - Integer) - Integer
eval,'(Litn)  =Ak [CKh
eval, (Diff e e = Ak [Cevhl,’e (A\m Cevhl; e ~(An CKAm — n)))

Tail-recursive, but higher-order.
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CPS with convenient abbreviations

eval, : EXxpr - Integer
eval, e = eval, e halt where
evaIZD: Expr - (Integer - Integer) - Integer
evaIZD(Lit n) =retn
eval, (Diff e e = Ak [Cevhl,’e (Am [Cevhl; 'e~(sub k m))

Tail-recursive, but higher-order.
Abbreviations:
halt =id

ret n = Ak Lk
sub = Ak [Am [ kK{m—n)
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Defunctionalize

data EvalFrames; = EvalLeftExpr; Expr | EvalRightValue; Integer

evals : EXxpr - Integer
evals e = evals e [] where mutual
evalg': Expr - List EvalFramesz - Integer
eval;'(Litn)  k =evalabsz k n
eval; (Diff e e k = evals e (EvalLeftExpr; e™: k)
evalabss : List EvalFrames - (Integer - Integer)
evalabss [ ] n =n
evalabss (EvalLeftExpr; e=: k) m = evals'e(EvalRightValue; m :: k)
evalabs; (EvalRightValue; m:: k) n = evalabs; k (m — n)

An interpreter, but not a compiler: stack contains unevaluated expressions.
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Where does this compiler come from?

data Instr = Pushl Integer | Subl
-- eg [Pushl 3, Pushl 4, Subl, Pushl 5,Subl ] — ie linear code

compile, : Expr - List Instr
compile, (Lit n) = [Pushl n]
compile, (Diff e e = compile, e + compile, e~ [Subl ]
execy : List Instr - List Integer - List Integer
execy p s = foldl step s p where
step ns (Pushl n) =n:ns
step (N :: m:: ns) Subl (m—n) . ns --note reversal of arguments

eval, : Expr - Integer
eval, e = case exec4 (compile,e) [Jof [n] [Nl



3. Generalized composition

Wand’s key insight (1982). Recursive case routes k to eval, e, but k, m to eval; e

eval, (Diff e e = Ak [Cevhl,’e (Am [Cevhl; e~(sub k m))

Generalize composition to
propagate multiple arguments:

b"gf =Ax1...% - g (f X1...%)

b gf
blgf
br+lgf

gf «— g f ;
gf «— Xr
A - b" g (f x)

or equivalently, b" = () - - - () (r times).
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Reynolds’ technique for deriving interpreters is extended to derive compilers from continuation
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introduction of special-purpose combinators. The semantics of a program phrase may be represented
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1. INTRODUCTION

In this paper, we attack the question of how a denotational semantics for a
language is related to an implementation of that language. Typically, one con-

structs the semantics of a target machine and of a (suitably abstract) compiler
and mrnvras o anmamiones hotuawraon the fuwn differant comantice F191




Omitted steps (see paper)...



But still tree-shaped

Diff
/ A\ B

Diff Lit / \ )
/N h 52 ;
Lit Lit 5 / \ / \ / \

=be Ret B? Ret Sub abse b* b
/ ) / N\ / \
3 4 / / \ /
3 Ret Sub 5 ret b? ret sub
/ / /N /
4 3 ret sub 5

/
4

How do we recover linear code?
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4. Assoclativity

Generalized composition is (of course!) (pseudo-)associative:

«— X1 X1
f
<« Xr Xr
X.r+1 —1h X.r+;|_
X.r+s X;’+S

ieb" (b’*1hg)f =b"™ h (b" gf). So we can rotate tree-shaped code to linear.

13



Rotating

evals expr

= |I definition of evals, eval5':,’ b® is application T]
bO (b® (b® (ret 3) (b2 (ret 4) sub)) (b2 (ret 5) sub)) halt

= [[ pseudo-associativity: b° (b* hg) f =b°h (b° g f) 7]
b0 (b? (ret 3) (b2 (ret 4) sub)) (b° (b2 (ret 5) sub) halt)

= [[ pseudo-associativity: b’ (b* hg) f =b°h (b°gf) T
b0 (ret 3) (b° (b2 (ret 4) sub) (b° (b2 (ret 5) sub) halt))

= [[ pseudo-associativity: b° (b hg) f =b*h (b°gf) T]
b® (ret 3) (b! (ret 4) (b° sub (b° (b? (ret 5) sub) halt)))

= [[ pseudo-associativity: b° (b hg) f =b*h (b°gf) T]
b0 (ret 3) (b (ret 4) (b° sub (b? (ret 5) (b° sub halt))))



More omitted steps (see paper). ..



No longer tree-shaped

BRet~,
/ \
Diff 3 BRety
/ \ / \
Diff Lit 4 BSub-
rep
/ N\ —) \
Lit Lit 5 BRet~
/ \ / \
3 4 5 BSuby

Halt7

bO
/ \
ret bl
// \
) 3 ret Db°
il / / \
4 sub Dbl
/ \
ret b
/ / \
5 sub halt
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This 1s where the compiler comes from!

compile, : Expr — List Instr
compile; = compileRep- - rep, where
compileRep- : ExprRep, r — List Instr
compileRep-, Halt~ =11
compileRep-, (BRet; n k) = Pushl n:: compileRep- k
compileRep-, (BSub7 k) = Subl :: compileRep- k

Indeed:

compile; expr = [Pushl 3, Pushl 4, Subl, Pushl 5, Subl ]

17



5. Conclusion

e accumulating parameters, continuation-passing style, defunctionalization
e Reynolds, Danvy: recursive interpreter ~~ tail-recursive abstract machine
e many other applications: fast reverse, traversals, zippers...

e but there’s usually an appeal to associativity there too

e generalized composition a useful tool

e perhaps it boils down to Cayley’s Theorem / Yoneda Lemma?
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publication in the Proceedings is taken, in the light of previous reviews and discussions at the
symposium.
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Implementing generalized composition

Really needs a dependent type, indexed by list of argument types:

Arrow : List Type - Type - Type

Arrow [ ] b=Db ?Id |
Arrow (a:as)b=a - Arrow as b I'lS

For example, at arity 2:
Arrow [Char, Bool] String = Char - Bool - String

Then defined by induction over the arity:

b:{as:List Type} - (b - ¢c) - Arrow asb - Arrow as c

b{as=[]} gf=gf
b{as=_:_}gf=bg-f
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Exploiting generalized composition

Recall:
eval, e = eval; e id
eval,'(Litn) = Ak [k
eval, (Diff e e = Ak [Cevhl,'e (Am Cevhl; e ~An CK{Am — n)))

21
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Exploiting generalized composition

Recall:

eval, e = eval, e halt
evaIZD(Lit n) =retn
[] - _ [1] []

eval, (Diff e e = Ak [Cevhl; e (A\m [evhl, e{An [sub k m n))
where for later convenience we introduce:

halt =id

ret n = Ak [Kkh

sub = Ak [Arh [ K{m—n)

21
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Exploiting generalized composition

Recall:

eval, e = eval, e halt
evaIZE'(Lit n) =retn
[] - _ [1] []
eval, (Diff e ey = Ak [Cevhl; e (Am [evhl, e{An [Csub k m n))
Then:

eval;, (Diff e e)
= |[ definition ]]
Ak [Cevhlye (\m Cevhl;'e~(An [sub k m n))
= [[ since Ak CgA{f k) isb' g (Ak CIK&) T
bl (eval,'e) (A\k m [evhl, e(An [sub k m n))
= |[[ sinceAkm Cgdf km)isb?g(Akm CIkm) T
bl (eval,e) (b2 (eval; e sub)

21
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Installing generalized composition

Rewrite the Diff case of eval,:

evals : EXxpr - Integer

evals e = evaIEe halt where
eval5'j: Expr - (Integer - Integer) - Integer
evaIE(Lit n) =retn
eval (Diff e e = b? (evalse) (b2 (evalged sub)

22



Representation

evaIEis not tail-recursive any more; but suggests another representation:

data ExprRepg : List Type - Type where

Retg : Integer - ExprRepg [ ]
Subg : EXprRepg [ Integer, Integer |
Bi :ExprRepg [] - ExprRepg [Integer] - ExprRepg [ ]

B :ExprRepg [] — ExprRepg [Integer, Integer] — ExprRepg [Integer ]
obtained by defunctionalizing the evaluator:

repg : Expr - ExprRepg [ ]
repg (Lit n) = Retg n
repg (Diff e e = B (repg €) (B (repg €Y Subsg)

Type index denotes what extra values are needed to complete evaluation.



Interpretation

Data of type ExprRepg r is a defunctionalized evaluation function of type
(Integer - Integer) - Arrow r Integer
Abstraction function refunctionalizes:

absg : EXprRepg r —» (Integer - Integer) - Arrow r Integer
absg (Retg n) =ret n

absg Subg = sub

absg (B x y) = b? (absg x) (abss y)

absg (B x y) = b? (absg x) (absg y)
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Linear code

data ExprRep- : List Type - Type where

Halt; : ExprRep- [Integer ]
BRet; : Integer - ExprRep-, (Integer ::r) - ExprRep-, r
BSub- : ExprRep- (Integer ::r) - ExprRep- (Integer :: Integer :: r)

supporting concatenation:

append- : ExprRep-, r - ExprRep- (Integer ::s) —» ExprRep- (r +S)
append- Halt; y =y

append- (BRet; n k) y = BRet; n (append- ky)

append- (BSuby k) y = BSub-; (append-; ky)

25



Representation and interpretation

Obtained by defunctionalizing the transformed interpreter:

rep- : EXxpr - ExprRep- []
rep, (Lit n) = BRet; n Halt;

rep, (Diff e e = append- (rep- e) (append- (rep- e (BSub; Halt;))

and interpreted like this:

abs; : ExprRep, r - Arrow r Integer
abs; Halt- = halt

abs; (BRet7 n k) =ret n (abs; k)
abs; (BSub; k) = flip (sub (abs; k)) -- note reversal of arguments again



