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1. Factorial

fact : Integer ! Integer

fact 0 = 1
fact n = n ⇥ fact (n � 1)

Recursive.
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Continuation-passing style

Introduce continuation as accumulating parameter:

fact
0
2 n k = k (fact n)

Then calculate:

fact2 : Integer ! Integer

fact2 n = fact
0
2 n id where

fact
0
2 : Integer ! (Integer ! Integer) ! Integer

fact
0
2 0 k = k 1

fact
0
2 n k = fact

0
2 (n � 1) (�m ) k (n ⇥ m))

Now tail-recursive, but higher-order.
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Defunctionalize

The continuations aren’t arbitrary Integer ! Integer functions:
always of the form (a⇥) · (b⇥) · · · · · (c⇥).

Data-refine this continuation to a list [a, b, . . . , c]:

fact3 : Integer ! Integer

fact3 n = fact
0
3 n [ ] where

fact
0
3 : Integer ! List Integer ! Integer

fact
0
3 0 k = product k

fact
0
3 n k = fact

0
3 (n � 1) (k ++ [n])

Tail-recursive, first order—but uses data structures.



CPS etc 5

Associativity

Further data-refine [a, b, . . . , c] to a ⇥ b ⇥ · · · ⇥ c.

fact4 : Integer ! Integer

fact4 n = fact
0
4 n 1 where

fact
0
4 : Integer ! Integer ! Integer

fact
0
4 0 k = k

fact
0
4 n k = fact

0
4 (n � 1) (k ⇥ n)

Data refinement valid by associativity.

Familiar: tail-recursive, first-order, only scalar data.

(This last step wouldn’t work for “subtractorial”.)

n, k := N , 1;
{ inv: n > 0 ^ k ⇥ n! = N ! }
while n 6= 0 do

n, k := n � 1, k ⇥ n

end
{ k = N ! }
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2. Hutton’s Razor

Expressions with subtraction, which is not associative:

data Expr = Lit Integer | Diff Expr Expr

expr : Expr

expr = Diff (Diff (Lit 3) (Lit 4)) (Lit 5) -- ie (3 � 4) � 5

Evaluation:

eval : Expr ! Integer

eval (Lit n) = n

eval (Diff e e
0) = eval e � eval e

0

Diff

Diff Lit

Lit Lit

3 4

5
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CPS

eval2 : Expr ! Integer

eval2 e = eval
0
2 e id where

eval
0
2 : Expr ! (Integer ! Integer) ! Integer

eval
0
2 (Lit n) = �k ) k n

eval
0
2 (Diff e e

0) = �k ) eval
0
2 e (�m ) eval

0
2 e

0 (�n ) k (m � n)))

Tail-recursive, but higher-order.
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CPS with convenient abbreviations

eval2 : Expr ! Integer

eval2 e = eval
0
2 e halt where

eval
0
2 : Expr ! (Integer ! Integer) ! Integer

eval
0
2 (Lit n) = ret n

eval
0
2 (Diff e e

0) = �k ) eval
0
2 e (�m ) eval

0
2 e

0 (sub k m))

Tail-recursive, but higher-order.

Abbreviations:

halt = id

ret n = �k ) k n

sub = �k ) �m ) �n ) k (m � n)
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Defunctionalize

data EvalFrame3 = EvalLeftExpr3 Expr | EvalRightValue3 Integer

eval3 : Expr ! Integer

eval3 e = eval
0
3 e [ ] where mutual

eval
0
3 : Expr ! List EvalFrame3 ! Integer

eval
0
3 (Lit n) k = evalabs3 k n

eval
0
3 (Diff e e

0) k = eval
0
3 e (EvalLeftExpr3 e

0 :: k)
evalabs3 : List EvalFrame3 ! (Integer ! Integer)
evalabs3 [ ] n = n

evalabs3 (EvalLeftExpr3 e
0 :: k) m = eval

0
3 e

0 (EvalRightValue3 m :: k)
evalabs3 (EvalRightValue3 m :: k) n = evalabs3 k (m � n)

An interpreter, but not a compiler: stack contains unevaluated expressions.
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Where does this compiler come from?

data Instr = PushI Integer | SubI

-- eg [PushI 3, PushI 4, SubI , PushI 5, SubI ] — ie linear code

compile4 : Expr ! List Instr

compile4 (Lit n) = [PushI n]
compile4 (Diff e e

0) = compile4 e ++ compile4 e
0 ++ [SubI ]

exec4 : List Instr ! List Integer ! List Integer

exec4 p s = foldl step s p where
step ns (PushI n) = n :: ns

step (n :: m :: ns) SubI = (m � n) :: ns -- note reversal of arguments

eval4 : Expr ! Integer

eval4 e = case exec4 (compile4 e) [ ] of [n] ) n
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3. Generalized composition

Wand’s key insight (1982). Recursive case routes k to eval
0
2 e, but k, m to eval

0
2 e

0:

eval
0
2 (Diff e e

0) = �k ) eval
0
2 e (�m ) eval

0
2 e

0 (sub k m))

Generalize composition to
propagate multiple arguments:

b
r

g f = �x1 . . . xr ! g (f x1 . . . xr)

ie

fg

x1

...

xr

b
0

g f = g f

b
1

g f = g · f

b
r+1

g f = �x ! b
r

g (f x)

or equivalently, b
r = (·) · · · (·) (r times).

Deriving Target Code as a Representation 
of Continuation Semantics 
MITCHELL WAND 
Indiana University 

Reynolds' technique for deriving interpreters is extended to derive compilers from continuation 
semantics. The technique starts by eliminating h-variables from the semantic equations through the 
introduction of special-purpose combinators. The semantics of a program phrase may be represented 
by a term built from these combinators. Then associative and distributive laws are used to simplify 
the terms. Last, a machine is built to interpret the simplified terms as the functions they represent. 
The combinators reappear as the instructions of this machine. The technique is illustrated with three 
examples. 
Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and 
Theory--semantics; D.3.4 [Programming Languages]: Processors--code generation; compilers; 
F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages--denotational 
semantics; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Lo~c--lambda 
calculus and related systems 
General Terms: Languages, Theory 
Additional Key Words and Phrases: Continuations, combinators 

1. INTRODUCTION 
I n  th is  paper ,  we a t t ack  the  q u e s t i o n  of how a d e n o t a t i o n s ]  s e m a n t i c s  for a 
l anguage  is r e l a t ed  to a n  i m p l e m e n t a t i o n  of t h a t  language .  Typ ica l ly ,  one  con- 
s t ruc t s  the  s eman t i c s  of a t a rge t  m a c h i n e  a n d  of a ( su i tab ly  abs t rac t )  compi le r  
a n d  proves  a cong ruence  b e t w e e n  the  two d i f fe rent  s e m a n t i c s  [12]. 

Our  a p p r o a c h  is qu i te  different .  S t a r t i n g  wi th  a c o n t i n u a t i o n  s e m a n t i c s  for the  
source  language ,  we cons t ruc t ,  v ia  a series of t r a n s f o r m a t i o n s  a n d  r e p r e s e n t a t i o n  
decisions,  a t a rge t  m a c h i n e  a n d  a compiler .  A typ ica l  s e m a n t i c s  has  f u n c t i o n a l i t y  

P: P g m s  ---> [Inputs -* Outputs]. 

A c o m p i l e r / t a r g e t  mach ine ,  on  the  o the r  hand ,  uses  the  pa i r  of f unc t i ons  

C o m p i l e :  P g m s  --, Reps; 
M a c h i n e :  R eps --. [Inputs ---> Outputs] 

This material is based on work supported by the National Science Foundation under grant MCS79- 
04183. 
Author's address: Computer Science Department, Indiana University, Bloomington, IN 47405. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
© 1982 ACM 0164-0925/82/0700-0496 $00.75 
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982, Pages 496-517. 
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Omitted steps (see paper). . .
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But still tree-shaped

Diff

Diff Lit

Lit Lit

3 4

5
rep6�!

B1

B1 B2

Ret B2 Ret Sub

3 Ret Sub 5

4

abs6�!

b1

b1 b2

ret b2 ret sub

3 ret sub 5

4

How do we recover linear code?
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4. Associativity

Generalized composition is (of course!) (pseudo-)associative:

f

gh

x1

...

xr

xr+1...
xr+s

=

f

gh

x1

...

xr

xr+1...
xr+s

ie b
r (b

s+1
h g) f = b

r+s
h (b

r
g f ). So we can rotate tree-shaped code to linear.
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Rotating

eval5 expr

= [[ definition of eval5, eval
0
5; b

0 is application ]]
b

0 (b
1 (b

1 (ret 3) (b
2 (ret 4) sub)) (b

2 (ret 5) sub)) halt

= [[ pseudo-associativity: b
0 (b

1
h g) f = b

0
h (b

0
g f ) ]]

b
0 (b

1 (ret 3) (b
2 (ret 4) sub)) (b

0 (b
2 (ret 5) sub) halt)

= [[ pseudo-associativity: b
0 (b

1
h g) f = b

0
h (b

0
g f ) ]]

b
0 (ret 3) (b

0 (b
2 (ret 4) sub) (b

0 (b
2 (ret 5) sub) halt))

= [[ pseudo-associativity: b
0 (b

2
h g) f = b

1
h (b

0
g f ) ]]

b
0 (ret 3) (b

1 (ret 4) (b
0

sub (b
0 (b

2 (ret 5) sub) halt)))
= [[ pseudo-associativity: b

0 (b
2

h g) f = b
1

h (b
0

g f ) ]]
b

0 (ret 3) (b
1 (ret 4) (b

0
sub (b

1 (ret 5) (b
0

sub halt))))
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More omitted steps (see paper). . .
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No longer tree-shaped

Diff

Diff Lit

Lit Lit

3 4

5

rep7�!

BRet7

3 BRet7

4 BSub7

BRet7

5 BSub7

Halt7

abs7�!

b0

ret b1

3 ret b0

4 sub b1

ret b0

5 sub halt
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This is where the compiler comes from!

compile7 : Expr ! List Instr

compile7 = compileRep7 · rep7 where
compileRep7 : ExprRep7 r ! List Instr

compileRep7 Halt7 = [ ]
compileRep7 (BRet7 n k) = PushI n :: compileRep7 k

compileRep7 (BSub7 k) = SubI :: compileRep7 k

Indeed:

compile7 expr = [PushI 3, PushI 4, SubI , PushI 5, SubI ]
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5. Conclusion

• accumulating parameters, continuation-passing style, defunctionalization

• Reynolds, Danvy: recursive interpreter  tail-recursive abstract machine

• many other applications: fast reverse, traversals, zippers. . .

• but there’s usually an appeal to associativity there too

• generalized composition a useful tool

• perhaps it boils down to Cayley’s Theorem / Yoneda Lemma?

Definitional Interpreters for Higher-Order Programming Languages 

3ohn C. Reynolds, Syracuse University 

Higher-order programming languages (i.e., 
languages in which procedures or labels 
can occur as values) are usually defined 
by interpreters which are themselves 
written in a programming language based 
on the lambda calculus (i.e., an 
applicative language such as pure LISP). 
Examples include McCarthy's definition 
of LISP, Landin's SECD machine, the 
Vienna definition of PL/I, Reynolds' 
definitions of GED~KEN, and recent 
unpublished work by L. Morris and 
C. Wadsworth. Such definitions can be 
classified according to whether the 
interpreter contains higher-order 
functions, and whether the order of 
application (i.e., call-by-value versus 
call-by-name) in the defined language 
depends upon the order of application 
in the defining language. As an example, 
we consider the definition of a simple 
applicative programming language by 
means of an interpreter written in 
a similar language. Definitions in 
each of the above classifications are 
derived from one another by informal 
but constructive methods. The treat- 
ment of imperative features such as 
jumps and assignment is also discussed. 

Key Words and Phrases: programming 
language, language definition, 
interpreter, lambda calculus, 
applicative language, higher-order 
function, closure, order of appli- 
cation, continuation, LISP, 
GEDANKEN, PAL, SECD machine, 
J-operator, reference. 
CR Categories: 4.20, 5.24, 4.13 

%Work supported by Rome Air Force Dev- 
elopment Center Contract No. 
30602-72-C-0281 and ARPA Contract No. 
DAHC04-72-C-0003. 

INTRODUCTION 

An important and frequently used 
method of defining a programming language 
is to give an interpreter for the language 
which is written in a second, hopefully 
better understood language. (We will 
call these two languages the defined 
and defining languages, respectively.) 
In this paper, we will describe and 
classify several varieties of such 
interpreters, and show how they may be 
derived from one another by informal but 
constructive methods. Although our 
approach to "constructive classification" 
is original, the paper is basically an 
attempt to review and systematize 
previous work in the field, and we have 
tried to make the presentation accessible 
to readers who are unfamiliar with this 
previous work. 

(Of course, interpretation can 
provide an implementation as well as a 
definition, but there are large practical 
differences between these usages. 
Definitional interpreters often achieve 
clarity by sacrificing all semblence of 
efficiency.) 

We begin by noting some salient 
charact%ristics of programming languages 
themselves. The features of these 
languages can be divided usefully into 
two categories: applicative features, 
such as expression evaluation and the 
definition and application of functions, 
and imperative features, such as 
statement sequencing, labels, jumps, 
assignment, and procedural side-effects. 
Most user-oriented languages provide 
features in both categories. Although 
machine languages are usually completely 
imperative, there are few "higher-level" 
languages in this category. (IPL/V 
might be an example.) On the other hand, 
there is at least one well-known example 
of a purely applicative language: LISP. 
(i.e., the language defined in McCarthy's 
original paper. ~I Most LISP implemen- 
tations provide an extended language 
including imperative features.) There 
are also several more recent, rather 
theoretical languages (ISWIM(2), PAL(3) 
and GEDANKEN (4)) which have been designed 
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Omitted material
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Implementing generalized composition

Really needs a dependent type, indexed by list of argument types:

Arrow : List Type ! Type ! Type

Arrow [ ] b = b

Arrow (a :: as) b = a ! Arrow as b

For example, at arity 2:

Arrow [Char, Bool] String = Char ! Bool ! String

Then defined by induction over the arity:

b : {as : List Type} ! (b ! c) ! Arrow as b ! Arrow as c

b {as = [ ]} g f = g f

b {as = :: } g f = b g · f
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Exploiting generalized composition

Recall:

eval2 e = eval
0
2 e id

eval
0
2 (Lit n) = �k ) k n

eval
0
2 (Diff e e

0) = �k ) eval
0
2 e (�m ) eval

0
2 e

0 (�n ) k (m � n)))
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Exploiting generalized composition

Recall:

eval2 e = eval
0
2 e halt

eval
0
2 (Lit n) = ret n

eval
0
2 (Diff e e

0) = �k ) eval
0
2 e (�m ) eval

0
2 e

0 (�n ) sub k m n))
where for later convenience we introduce:

halt = id

ret n = �k ) k n

sub = �k ) �m ) �n ) k (m � n)
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Exploiting generalized composition

Recall:

eval2 e = eval
0
2 e halt

eval
0
2 (Lit n) = ret n

eval
0
2 (Diff e e

0) = �k ) eval
0
2 e (�m ) eval

0
2 e

0 (�n ) sub k m n))
Then:

eval
0
2 (Diff e e

0)
= [[ definition ]]

�k ) eval
0
2 e (�m ) eval

0
2 e

0 (�n ) sub k m n))
= [[ since �k ) g (f k) is b

1
g (�k ) f k) ]]

b
1 (eval

0
2 e) (�k m ) eval

0
2 e

0 (�n ) sub k m n))
= [[ since �k m ) g (f k m) is b

2
g (�k m ) f k m) ]]

b
1 (eval

0
2 e) (b

2 (eval
0
2 e

0) sub)
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Installing generalized composition

Rewrite the Diff case of eval
0
2:

eval5 : Expr ! Integer

eval5 e = eval
0
5 e halt where

eval
0
5 : Expr ! (Integer ! Integer) ! Integer

eval
0
5 (Lit n) = ret n

eval
0
5 (Diff e e

0) = b
1 (eval

0
5 e) (b

2 (eval
0
5 e

0) sub)
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Representation

eval
0
5 is not tail-recursive any more; but suggests another representation:

data ExprRep6 : List Type ! Type where
Ret6 : Integer ! ExprRep6 [ ]
Sub6 : ExprRep6 [Integer, Integer ]
B

1
6 : ExprRep6 [ ] ! ExprRep6 [Integer ] ! ExprRep6 [ ]

B
2
6 : ExprRep6 [ ] ! ExprRep6 [Integer, Integer ] ! ExprRep6 [Integer ]

obtained by defunctionalizing the evaluator:

rep6 : Expr ! ExprRep6 [ ]
rep6 (Lit n) = Ret6 n

rep6 (Diff e e
0) = B

1
6 (rep6 e) (B

2
6 (rep6 e

0) Sub6)

Type index denotes what extra values are needed to complete evaluation.
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Interpretation

Data of type ExprRep6 r is a defunctionalized evaluation function of type

(Integer ! Integer) ! Arrow r Integer

Abstraction function refunctionalizes:

abs6 : ExprRep6 r ! (Integer ! Integer) ! Arrow r Integer

abs6 (Ret6 n) = ret n

abs6 Sub6 = sub

abs6 (B
1
6 x y) = b

1 (abs6 x) (abs6 y)
abs6 (B

2
6 x y) = b

2 (abs6 x) (abs6 y)
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Linear code

data ExprRep7 : List Type ! Type where
Halt7 : ExprRep7 [Integer ]
BRet7 : Integer ! ExprRep7 (Integer :: r) ! ExprRep7 r

BSub7 : ExprRep7 (Integer :: r) ! ExprRep7 (Integer :: Integer :: r)

supporting concatenation:

append7 : ExprRep7 r ! ExprRep7 (Integer :: s) ! ExprRep7 (r ++ s)
append7 Halt7 y = y

append7 (BRet7 n k) y = BRet7 n (append7 k y)
append7 (BSub7 k) y = BSub7 (append7 k y)
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Representation and interpretation

Obtained by defunctionalizing the transformed interpreter:

rep7 : Expr ! ExprRep7 [ ]
rep7 (Lit n) = BRet7 n Halt7

rep7 (Diff e e
0) = append7 (rep7 e) (append7 (rep7 e

0) (BSub7 Halt7))

and interpreted like this:

abs7 : ExprRep7 r ! Arrow r Integer

abs7 Halt7 = halt

abs7 (BRet7 n k) = ret n (abs7 k)
abs7 (BSub7 k) = flip (sub (abs7 k)) -- note reversal of arguments again


