
Jeremy Gibbons
University of Oxford

Continuation-Passing Style,
Defunctionalization,
Accumulations, and

Associativity

CPS etc 2

1. Factorial

fact : Integer ! Integer

fact 0 = 1
fact n = n ⇥ fact (n � 1)

Recursive.

CPS etc 3

Continuation-passing style

Introduce continuation as accumulating parameter:

fact
0
2 n k = k (fact n)

Then calculate:

fact2 : Integer ! Integer

fact2 n = fact
0
2 n id where

fact
0
2 : Integer ! (Integer ! Integer) ! Integer

fact
0
2 0 k = k 1

fact
0
2 n k = fact

0
2 (n � 1) (�m) k (n ⇥ m))

Now tail-recursive, but higher-order.

CPS etc 4

Defunctionalize

The continuations aren’t arbitrary Integer ! Integer functions:
always of the form (a⇥) · (b⇥) · · · · · (c⇥).

Data-refine this continuation to a list [a, b, . . . , c]:

fact3 : Integer ! Integer

fact3 n = fact
0
3 n [] where

fact
0
3 : Integer ! List Integer ! Integer

fact
0
3 0 k = product k

fact
0
3 n k = fact

0
3 (n � 1) (k ++ [n])

Tail-recursive, first order—but uses data structures.

CPS etc 5

Associativity

Further data-refine [a, b, . . . , c] to a ⇥ b ⇥ · · · ⇥ c.

fact4 : Integer ! Integer

fact4 n = fact
0
4 n 1 where

fact
0
4 : Integer ! Integer ! Integer

fact
0
4 0 k = k

fact
0
4 n k = fact

0
4 (n � 1) (k ⇥ n)

Data refinement valid by associativity.

Familiar: tail-recursive, first-order, only scalar data.

(This last step wouldn’t work for “subtractorial”.)

n, k := N , 1;
{ inv: n > 0 ^ k ⇥ n! = N ! }
while n 6= 0 do

n, k := n � 1, k ⇥ n

end
{ k = N ! }

CPS etc 6

2. Hutton’s Razor

Expressions with subtraction, which is not associative:

data Expr = Lit Integer | Diff Expr Expr

expr : Expr

expr = Diff (Diff (Lit 3) (Lit 4)) (Lit 5) -- ie (3 � 4) � 5

Evaluation:

eval : Expr ! Integer

eval (Lit n) = n

eval (Diff e e
0) = eval e � eval e

0

Diff

Diff Lit

Lit Lit

3 4

5

CPS etc 7

CPS

eval2 : Expr ! Integer

eval2 e = eval
0
2 e id where

eval
0
2 : Expr ! (Integer ! Integer) ! Integer

eval
0
2 (Lit n) = �k) k n

eval
0
2 (Diff e e

0) = �k) eval
0
2 e (�m) eval

0
2 e

0 (�n) k (m � n)))

Tail-recursive, but higher-order.

CPS etc 7

CPS with convenient abbreviations

eval2 : Expr ! Integer

eval2 e = eval
0
2 e halt where

eval
0
2 : Expr ! (Integer ! Integer) ! Integer

eval
0
2 (Lit n) = ret n

eval
0
2 (Diff e e

0) = �k) eval
0
2 e (�m) eval

0
2 e

0 (sub k m))

Tail-recursive, but higher-order.

Abbreviations:

halt = id

ret n = �k) k n

sub = �k) �m) �n) k (m � n)

CPS etc 8

Defunctionalize

data EvalFrame3 = EvalLeftExpr3 Expr | EvalRightValue3 Integer

eval3 : Expr ! Integer

eval3 e = eval
0
3 e [] where mutual

eval
0
3 : Expr ! List EvalFrame3 ! Integer

eval
0
3 (Lit n) k = evalabs3 k n

eval
0
3 (Diff e e

0) k = eval
0
3 e (EvalLeftExpr3 e

0 :: k)
evalabs3 : List EvalFrame3 ! (Integer ! Integer)
evalabs3 [] n = n

evalabs3 (EvalLeftExpr3 e
0 :: k) m = eval

0
3 e

0 (EvalRightValue3 m :: k)
evalabs3 (EvalRightValue3 m :: k) n = evalabs3 k (m � n)

An interpreter, but not a compiler: stack contains unevaluated expressions.

CPS etc 9

Where does this compiler come from?

data Instr = PushI Integer | SubI

-- eg [PushI 3, PushI 4, SubI , PushI 5, SubI] — ie linear code

compile4 : Expr ! List Instr

compile4 (Lit n) = [PushI n]
compile4 (Diff e e

0) = compile4 e ++ compile4 e
0 ++ [SubI]

exec4 : List Instr ! List Integer ! List Integer

exec4 p s = foldl step s p where
step ns (PushI n) = n :: ns

step (n :: m :: ns) SubI = (m � n) :: ns -- note reversal of arguments

eval4 : Expr ! Integer

eval4 e = case exec4 (compile4 e) [] of [n]) n

CPS etc 10

3. Generalized composition

Wand’s key insight (1982). Recursive case routes k to eval
0
2 e, but k, m to eval

0
2 e

0:

eval
0
2 (Diff e e

0) = �k) eval
0
2 e (�m) eval

0
2 e

0 (sub k m))

Generalize composition to
propagate multiple arguments:

b
r

g f = �x1 . . . xr ! g (f x1 . . . xr)

ie

fg

x1

...

xr

b
0

g f = g f

b
1

g f = g · f

b
r+1

g f = �x ! b
r

g (f x)

or equivalently, b
r = (·) · · · (·) (r times).

Deriving Target Code as a Representation
of Continuation Semantics
MITCHELL WAND
Indiana University

Reynolds' technique for deriving interpreters is extended to derive compilers from continuation
semantics. The technique starts by eliminating h-variables from the semantic equations through the
introduction of special-purpose combinators. The semantics of a program phrase may be represented
by a term built from these combinators. Then associative and distributive laws are used to simplify
the terms. Last, a machine is built to interpret the simplified terms as the functions they represent.
The combinators reappear as the instructions of this machine. The technique is illustrated with three
examples.
Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory--semantics; D.3.4 [Programming Languages]: Processors--code generation; compilers;
F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages--denotational
semantics; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Lo~c--lambda
calculus and related systems
General Terms: Languages, Theory
Additional Key Words and Phrases: Continuations, combinators

1. INTRODUCTION
I n th is paper , we a t t ack the q u e s t i o n of how a d e n o t a t i o n s] s e m a n t i c s for a
l anguage is r e l a t ed to a n i m p l e m e n t a t i o n of t h a t language . Typ ica l ly , one con-
s t ruc t s the s eman t i c s of a t a rge t m a c h i n e a n d of a (su i tab ly abs t rac t) compi le r
a n d proves a cong ruence b e t w e e n the two d i f fe rent s e m a n t i c s [12].

Our a p p r o a c h is qu i te different . S t a r t i n g wi th a c o n t i n u a t i o n s e m a n t i c s for the
source language , we cons t ruc t , v ia a series of t r a n s f o r m a t i o n s a n d r e p r e s e n t a t i o n
decisions, a t a rge t m a c h i n e a n d a compiler . A typ ica l s e m a n t i c s has f u n c t i o n a l i t y

P: P g m s ---> [Inputs -* Outputs].

A c o m p i l e r / t a r g e t mach ine , on the o the r hand , uses the pa i r of f unc t i ons

C o m p i l e : P g m s --, Reps;
M a c h i n e : R eps --. [Inputs ---> Outputs]

This material is based on work supported by the National Science Foundation under grant MCS79-
04183.
Author's address: Computer Science Department, Indiana University, Bloomington, IN 47405.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0164-0925/82/0700-0496 $00.75
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982, Pages 496-517.

CPS etc 11

Omitted steps (see paper). . .

CPS etc 12

But still tree-shaped

Diff

Diff Lit

Lit Lit

3 4

5
rep6�!

B1

B1 B2

Ret B2 Ret Sub

3 Ret Sub 5

4

abs6�!

b1

b1 b2

ret b2 ret sub

3 ret sub 5

4

How do we recover linear code?

CPS etc 13

4. Associativity

Generalized composition is (of course!) (pseudo-)associative:

f

gh

x1

...

xr

xr+1...
xr+s

=

f

gh

x1

...

xr

xr+1...
xr+s

ie b
r (b

s+1
h g) f = b

r+s
h (b

r
g f). So we can rotate tree-shaped code to linear.

CPS etc 14

Rotating

eval5 expr

= [[definition of eval5, eval
0
5; b

0 is application]]
b

0 (b
1 (b

1 (ret 3) (b
2 (ret 4) sub)) (b

2 (ret 5) sub)) halt

= [[pseudo-associativity: b
0 (b

1
h g) f = b

0
h (b

0
g f)]]

b
0 (b

1 (ret 3) (b
2 (ret 4) sub)) (b

0 (b
2 (ret 5) sub) halt)

= [[pseudo-associativity: b
0 (b

1
h g) f = b

0
h (b

0
g f)]]

b
0 (ret 3) (b

0 (b
2 (ret 4) sub) (b

0 (b
2 (ret 5) sub) halt))

= [[pseudo-associativity: b
0 (b

2
h g) f = b

1
h (b

0
g f)]]

b
0 (ret 3) (b

1 (ret 4) (b
0

sub (b
0 (b

2 (ret 5) sub) halt)))
= [[pseudo-associativity: b

0 (b
2

h g) f = b
1

h (b
0

g f)]]
b

0 (ret 3) (b
1 (ret 4) (b

0
sub (b

1 (ret 5) (b
0

sub halt))))

CPS etc 15

More omitted steps (see paper). . .

CPS etc 16

No longer tree-shaped

Diff

Diff Lit

Lit Lit

3 4

5

rep7�!

BRet7

3 BRet7

4 BSub7

BRet7

5 BSub7

Halt7

abs7�!

b0

ret b1

3 ret b0

4 sub b1

ret b0

5 sub halt

CPS etc 17

This is where the compiler comes from!

compile7 : Expr ! List Instr

compile7 = compileRep7 · rep7 where
compileRep7 : ExprRep7 r ! List Instr

compileRep7 Halt7 = []
compileRep7 (BRet7 n k) = PushI n :: compileRep7 k

compileRep7 (BSub7 k) = SubI :: compileRep7 k

Indeed:

compile7 expr = [PushI 3, PushI 4, SubI , PushI 5, SubI]

CPS etc 18

5. Conclusion

• accumulating parameters, continuation-passing style, defunctionalization

• Reynolds, Danvy: recursive interpreter tail-recursive abstract machine

• many other applications: fast reverse, traversals, zippers. . .

• but there’s usually an appeal to associativity there too

• generalized composition a useful tool

• perhaps it boils down to Cayley’s Theorem / Yoneda Lemma?

Definitional Interpreters for Higher-Order Programming Languages

3ohn C. Reynolds, Syracuse University

Higher-order programming languages (i.e.,
languages in which procedures or labels
can occur as values) are usually defined
by interpreters which are themselves
written in a programming language based
on the lambda calculus (i.e., an
applicative language such as pure LISP).
Examples include McCarthy's definition
of LISP, Landin's SECD machine, the
Vienna definition of PL/I, Reynolds'
definitions of GED~KEN, and recent
unpublished work by L. Morris and
C. Wadsworth. Such definitions can be
classified according to whether the
interpreter contains higher-order
functions, and whether the order of
application (i.e., call-by-value versus
call-by-name) in the defined language
depends upon the order of application
in the defining language. As an example,
we consider the definition of a simple
applicative programming language by
means of an interpreter written in
a similar language. Definitions in
each of the above classifications are
derived from one another by informal
but constructive methods. The treat-
ment of imperative features such as
jumps and assignment is also discussed.

Key Words and Phrases: programming
language, language definition,
interpreter, lambda calculus,
applicative language, higher-order
function, closure, order of appli-
cation, continuation, LISP,
GEDANKEN, PAL, SECD machine,
J-operator, reference.
CR Categories: 4.20, 5.24, 4.13

%Work supported by Rome Air Force Dev-
elopment Center Contract No.
30602-72-C-0281 and ARPA Contract No.
DAHC04-72-C-0003.

INTRODUCTION

An important and frequently used
method of defining a programming language
is to give an interpreter for the language
which is written in a second, hopefully
better understood language. (We will
call these two languages the defined
and defining languages, respectively.)
In this paper, we will describe and
classify several varieties of such
interpreters, and show how they may be
derived from one another by informal but
constructive methods. Although our
approach to "constructive classification"
is original, the paper is basically an
attempt to review and systematize
previous work in the field, and we have
tried to make the presentation accessible
to readers who are unfamiliar with this
previous work.

(Of course, interpretation can
provide an implementation as well as a
definition, but there are large practical
differences between these usages.
Definitional interpreters often achieve
clarity by sacrificing all semblence of
efficiency.)

We begin by noting some salient
charact%ristics of programming languages
themselves. The features of these
languages can be divided usefully into
two categories: applicative features,
such as expression evaluation and the
definition and application of functions,
and imperative features, such as
statement sequencing, labels, jumps,
assignment, and procedural side-effects.
Most user-oriented languages provide
features in both categories. Although
machine languages are usually completely
imperative, there are few "higher-level"
languages in this category. (IPL/V
might be an example.) On the other hand,
there is at least one well-known example
of a purely applicative language: LISP.
(i.e., the language defined in McCarthy's
original paper. ~I Most LISP implemen-
tations provide an extended language
including imperative features.) There
are also several more recent, rather
theoretical languages (ISWIM(2), PAL(3)
and GEDANKEN (4)) which have been designed

717

Definitional Interpreters for Higher-Order Programming Languages

3ohn C. Reynolds, Syracuse University

Higher-order programming languages (i.e.,
languages in which procedures or labels
can occur as values) are usually defined
by interpreters which are themselves
written in a programming language based
on the lambda calculus (i.e., an
applicative language such as pure LISP).
Examples include McCarthy's definition
of LISP, Landin's SECD machine, the
Vienna definition of PL/I, Reynolds'
definitions of GED~KEN, and recent
unpublished work by L. Morris and
C. Wadsworth. Such definitions can be
classified according to whether the
interpreter contains higher-order
functions, and whether the order of
application (i.e., call-by-value versus
call-by-name) in the defined language
depends upon the order of application
in the defining language. As an example,
we consider the definition of a simple
applicative programming language by
means of an interpreter written in
a similar language. Definitions in
each of the above classifications are
derived from one another by informal
but constructive methods. The treat-
ment of imperative features such as
jumps and assignment is also discussed.

Key Words and Phrases: programming
language, language definition,
interpreter, lambda calculus,
applicative language, higher-order
function, closure, order of appli-
cation, continuation, LISP,
GEDANKEN, PAL, SECD machine,
J-operator, reference.
CR Categories: 4.20, 5.24, 4.13

%Work supported by Rome Air Force Dev-
elopment Center Contract No.
30602-72-C-0281 and ARPA Contract No.
DAHC04-72-C-0003.

INTRODUCTION

An important and frequently used
method of defining a programming language
is to give an interpreter for the language
which is written in a second, hopefully
better understood language. (We will
call these two languages the defined
and defining languages, respectively.)
In this paper, we will describe and
classify several varieties of such
interpreters, and show how they may be
derived from one another by informal but
constructive methods. Although our
approach to "constructive classification"
is original, the paper is basically an
attempt to review and systematize
previous work in the field, and we have
tried to make the presentation accessible
to readers who are unfamiliar with this
previous work.

(Of course, interpretation can
provide an implementation as well as a
definition, but there are large practical
differences between these usages.
Definitional interpreters often achieve
clarity by sacrificing all semblence of
efficiency.)

We begin by noting some salient
charact%ristics of programming languages
themselves. The features of these
languages can be divided usefully into
two categories: applicative features,
such as expression evaluation and the
definition and application of functions,
and imperative features, such as
statement sequencing, labels, jumps,
assignment, and procedural side-effects.
Most user-oriented languages provide
features in both categories. Although
machine languages are usually completely
imperative, there are few "higher-level"
languages in this category. (IPL/V
might be an example.) On the other hand,
there is at least one well-known example
of a purely applicative language: LISP.
(i.e., the language defined in McCarthy's
original paper. ~I Most LISP implemen-
tations provide an extended language
including imperative features.) There
are also several more recent, rather
theoretical languages (ISWIM(2), PAL(3)
and GEDANKEN (4)) which have been designed

717

An
dr

as
zy

, C
C

BY
-S

A,
 v

ia
 W

ik
im

ed
ia

 C
om

m
on

s

CPS etc 19

Omitted material

CPS etc 20

Implementing generalized composition

Really needs a dependent type, indexed by list of argument types:

Arrow : List Type ! Type ! Type

Arrow [] b = b

Arrow (a :: as) b = a ! Arrow as b

For example, at arity 2:

Arrow [Char, Bool] String = Char ! Bool ! String

Then defined by induction over the arity:

b : {as : List Type} ! (b ! c) ! Arrow as b ! Arrow as c

b {as = []} g f = g f

b {as = :: } g f = b g · f

CPS etc 21

Exploiting generalized composition

Recall:

eval2 e = eval
0
2 e id

eval
0
2 (Lit n) = �k) k n

eval
0
2 (Diff e e

0) = �k) eval
0
2 e (�m) eval

0
2 e

0 (�n) k (m � n)))

CPS etc 21

Exploiting generalized composition

Recall:

eval2 e = eval
0
2 e halt

eval
0
2 (Lit n) = ret n

eval
0
2 (Diff e e

0) = �k) eval
0
2 e (�m) eval

0
2 e

0 (�n) sub k m n))
where for later convenience we introduce:

halt = id

ret n = �k) k n

sub = �k) �m) �n) k (m � n)

CPS etc 21

Exploiting generalized composition

Recall:

eval2 e = eval
0
2 e halt

eval
0
2 (Lit n) = ret n

eval
0
2 (Diff e e

0) = �k) eval
0
2 e (�m) eval

0
2 e

0 (�n) sub k m n))
Then:

eval
0
2 (Diff e e

0)
= [[definition]]

�k) eval
0
2 e (�m) eval

0
2 e

0 (�n) sub k m n))
= [[since �k) g (f k) is b

1
g (�k) f k)]]

b
1 (eval

0
2 e) (�k m) eval

0
2 e

0 (�n) sub k m n))
= [[since �k m) g (f k m) is b

2
g (�k m) f k m)]]

b
1 (eval

0
2 e) (b

2 (eval
0
2 e

0) sub)

CPS etc 22

Installing generalized composition

Rewrite the Diff case of eval
0
2:

eval5 : Expr ! Integer

eval5 e = eval
0
5 e halt where

eval
0
5 : Expr ! (Integer ! Integer) ! Integer

eval
0
5 (Lit n) = ret n

eval
0
5 (Diff e e

0) = b
1 (eval

0
5 e) (b

2 (eval
0
5 e

0) sub)

CPS etc 23

Representation

eval
0
5 is not tail-recursive any more; but suggests another representation:

data ExprRep6 : List Type ! Type where
Ret6 : Integer ! ExprRep6 []
Sub6 : ExprRep6 [Integer, Integer]
B

1
6 : ExprRep6 [] ! ExprRep6 [Integer] ! ExprRep6 []

B
2
6 : ExprRep6 [] ! ExprRep6 [Integer, Integer] ! ExprRep6 [Integer]

obtained by defunctionalizing the evaluator:

rep6 : Expr ! ExprRep6 []
rep6 (Lit n) = Ret6 n

rep6 (Diff e e
0) = B

1
6 (rep6 e) (B

2
6 (rep6 e

0) Sub6)

Type index denotes what extra values are needed to complete evaluation.

CPS etc 24

Interpretation

Data of type ExprRep6 r is a defunctionalized evaluation function of type

(Integer ! Integer) ! Arrow r Integer

Abstraction function refunctionalizes:

abs6 : ExprRep6 r ! (Integer ! Integer) ! Arrow r Integer

abs6 (Ret6 n) = ret n

abs6 Sub6 = sub

abs6 (B
1
6 x y) = b

1 (abs6 x) (abs6 y)
abs6 (B

2
6 x y) = b

2 (abs6 x) (abs6 y)

CPS etc 25

Linear code

data ExprRep7 : List Type ! Type where
Halt7 : ExprRep7 [Integer]
BRet7 : Integer ! ExprRep7 (Integer :: r) ! ExprRep7 r

BSub7 : ExprRep7 (Integer :: r) ! ExprRep7 (Integer :: Integer :: r)

supporting concatenation:

append7 : ExprRep7 r ! ExprRep7 (Integer :: s) ! ExprRep7 (r ++ s)
append7 Halt7 y = y

append7 (BRet7 n k) y = BRet7 n (append7 k y)
append7 (BSub7 k) y = BSub7 (append7 k y)

CPS etc 26

Representation and interpretation

Obtained by defunctionalizing the transformed interpreter:

rep7 : Expr ! ExprRep7 []
rep7 (Lit n) = BRet7 n Halt7

rep7 (Diff e e
0) = append7 (rep7 e) (append7 (rep7 e

0) (BSub7 Halt7))

and interpreted like this:

abs7 : ExprRep7 r ! Arrow r Integer

abs7 Halt7 = halt

abs7 (BRet7 n k) = ret n (abs7 k)
abs7 (BSub7 k) = flip (sub (abs7 k)) -- note reversal of arguments again

