~ Jeremy Gibbons
niversity of Oxford

% .4

CPS etc

1. Factorial

fact : Integer - Integer

fact O
fact n

Recursive.

1
nxfact (n—1)

Continuation-passing style

Introduce continuation as accumulating parameter:
fact;'n k = k (fact n)
Then calculate:

fact, : Integer - Integer

fact, n = fact,'n id where
fathE': Integer - (Integer - Integer) - Integer
fact; 0k =k 1
fact;'n k = fact; '(n — 1) (Am LCK{An x m))

Now tail-recursive, but higher-order.

Defunctionalize

The continuations aren’t arbitrary Integer - Integer functions:
always of the form (ax) - (bx) - - - - - (cx).

Data-refine this continuation to a list [a, b, ...,c]:

fact, : Integer - Integer
fact; n = factEn [1 where
facts" Integer — List Integer - Integer

fact5'0 k = product k
factBDn k = factBD(n — 1) (k+[n]

Tail-recursive, first order—but uses data structures.

Associativity

Further data-refine [a,b,...,c]J]toaxbx .. xc,.

fact, : Integer - Integer

fact, n = fact,’n 1 where
factf': Integer - Integer - Integer
fact, 0 k = k
fact,'n k = fact,'(n — 1) (k < n)

Data refinement valid by associativity.

Familiar: tail-recursive, first-order, only scalar data.

(This last step wouldn’t work for “subtractorial”.)

Nn,k:=N,1;

{invin>0 Lkixkn!'=N! }

while n 82 0 do
Nk:=n—1,kxn

end

{ k=N! }

2. Hutton’s Razor

Expressions with subtraction, which is not associative:

data Expr = Lit Integer | Diff Expr Expr
expr : Expr
expr = Diff (Diff (Lit 3) (Lit4)) (Lit5) --ie(3—4)—5

Evaluation: Diff

/ N\

eval : Expr - Integer

_ Diff Lit
eval (Lit n) =n
eval (Diff e e") = eval e —eval e ./ \ . \
Lit Lit)
/ \

3 4

CPS etc

CPS

eval, : EXxpr - Integer
eval, e = eval, e id where
evaIZE': Expr - (Integer - Integer) - Integer
eval,'(Litn) =Ak [CKh
eval, (Diff e e = Ak [Cevhl,’e (A\m Cevhl; e ~(An CKAm — n)))

Tail-recursive, but higher-order.

CPS etc

CPS with convenient abbreviations

eval, : EXxpr - Integer
eval, e = eval, e halt where
evaIZD: Expr - (Integer - Integer) - Integer
evaIZD(Lit n) =retn
eval, (Diff e e = Ak [Cevhl,’e (Am [Cevhl; 'e~(sub k m))

Tail-recursive, but higher-order.
Abbreviations:
halt =id

ret n = Ak Lk
sub = Ak [Am [kK{m—n)

CPS etc

Defunctionalize

data EvalFrames; = EvalLeftExpr; Expr | EvalRightValue; Integer

evals : EXxpr - Integer
evals e = evals e [] where mutual
evalg': Expr - List EvalFramesz - Integer
eval;'(Litn) k =evalabsz k n
eval; (Diff e e k = evals e (EvalLeftExpr; e™: k)
evalabss : List EvalFrames - (Integer - Integer)
evalabss [] n =n
evalabss (EvalLeftExpr; e=: k) m = evals'e(EvalRightValue; m :: k)
evalabs; (EvalRightValue; m:: k) n = evalabs; k (m — n)

An interpreter, but not a compiler: stack contains unevaluated expressions.

CPS etc

Where does this compiler come from?

data Instr = Pushl Integer | Subl
-- eg [Pushl 3, Pushl 4, Subl, Pushl 5,Subl] — ie linear code

compile, : Expr - List Instr
compile, (Lit n) = [Pushl n]
compile, (Diff e e = compile, e + compile, e~ [Subl]
execy : List Instr - List Integer - List Integer
execy p s = foldl step s p where
step ns (Pushl n) =n:ns
step (N :: m:: ns) Subl (m—n) . ns --note reversal of arguments

eval, : Expr - Integer
eval, e = case exec4 (compile,e) [Jof [n] [Nl

3. Generalized composition

Wand’s key insight (1982). Recursive case routes k to eval, e, but k, m to eval; e

eval, (Diff e e = Ak [Cevhl,’e (Am [Cevhl; e~(sub k m))

Generalize composition to
propagate multiple arguments:

b"gf =Ax1...% - g (f X1...%)

b gf
blgf
br+lgf

gf «— g f ;
gf «— Xr
A - b" g (f x)

or equivalently, b" = () - - - () (r times).

Deriving Target Code as a Representation
of Continuation Semantics

MITCHELL WAND
Indiana University

Reynolds’ technique for deriving interpreters is extended to derive compilers from continuation
semantics. The technique starts by eliminating A-variables from the semantic equations through the
introduction of special-purpose combinators. The semantics of a program phrase may be represented
by a term built from these combinators. Then associative and distributive laws are used to simplify
the terms. Last, a machine is built to interpret the simplified terms as the functions they represent.
The combinators reappear as the instructions of this machine. The technique is illustrated with three
examples.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory—semantics; D.3.4 [Programming Languages]: Processors—code generation; compilers;
F.3.2 [Logics and Meanings of Programs): Semantics of Programming Languages—denotational
semantics; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—lambda
calculus and related systems

General Terms: Languages, Theory
Additional Key Words and Phrases: Continuations, combinators

1. INTRODUCTION

In this paper, we attack the question of how a denotational semantics for a
language is related to an implementation of that language. Typically, one con-

structs the semantics of a target machine and of a (suitably abstract) compiler
and mrnvras o anmamiones hotuawraon the fuwn differant comantice F191

Omitted steps (see paper)...

But still tree-shaped

Diff
/ A\ B

Diff Lit / \)
/N h 52 ;
Lit Lit 5 / \ / \ / \

=be Ret B? Ret Sub abse b* b
/) / N\ / \
3 4 / / \ /
3 Ret Sub 5 ret b? ret sub
/ / /N /
4 3 ret sub 5

/
4

How do we recover linear code?

CPS etc

4. Assoclativity

Generalized composition is (of course!) (pseudo-)associative:

«— X1 X1
f
<« Xr Xr
X.r+1 —1h X.r+;|_
X.r+s X;’+S

ieb" (b’*1hg)f =b"™ h (b" gf). So we can rotate tree-shaped code to linear.

13

Rotating

evals expr

= |I definition of evals, eval5':,’ b® is application T]
bO (b® (b® (ret 3) (b2 (ret 4) sub)) (b2 (ret 5) sub)) halt

= [[pseudo-associativity: b° (b* hg) f =b°h (b° g f) 7]
b0 (b? (ret 3) (b2 (ret 4) sub)) (b° (b2 (ret 5) sub) halt)

= [[pseudo-associativity: b’ (b* hg) f =b°h (b°gf) T
b0 (ret 3) (b° (b2 (ret 4) sub) (b° (b2 (ret 5) sub) halt))

= [[pseudo-associativity: b° (b hg) f =b*h (b°gf) T]
b® (ret 3) (b! (ret 4) (b° sub (b° (b? (ret 5) sub) halt)))

= [[pseudo-associativity: b° (b hg) f =b*h (b°gf) T]
b0 (ret 3) (b (ret 4) (b° sub (b? (ret 5) (b° sub halt))))

More omitted steps (see paper). ..

No longer tree-shaped

BRet~,
/ \
Diff 3 BRety
/ \ / \
Diff Lit 4 BSub-
rep
/ N\ —) \
Lit Lit 5 BRet~
/ \ / \
3 4 5 BSuby

Halt7

bO
/ \
ret bl
// \
) 3 ret Db°
il / / \
4 sub Dbl
/ \
ret b
/ / \
5 sub halt

CPS etc

This 1s where the compiler comes from!

compile, : Expr — List Instr
compile; = compileRep- - rep, where
compileRep- : ExprRep, r — List Instr
compileRep-, Halt~ =11
compileRep-, (BRet; n k) = Pushl n:: compileRep- k
compileRep-, (BSub7 k) = Subl :: compileRep- k

Indeed:

compile; expr = [Pushl 3, Pushl 4, Subl, Pushl 5, Subl]

17

5. Conclusion

e accumulating parameters, continuation-passing style, defunctionalization
e Reynolds, Danvy: recursive interpreter ~~ tail-recursive abstract machine
e many other applications: fast reverse, traversals, zippers...

e but there’s usually an appeal to associativity there too

e generalized composition a useful tool

e perhaps it boils down to Cayley’s Theorem / Yoneda Lemma?

Definitional Interpreters for Higher-Order Programming Languages

A Functional Correspondence

John C. Reynolds, Syracuse Universit .
Y v v between Evaluators and Abstract Machines

Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard
BRICS*
Department of Computer Science
University of Aarhus "

INTRODUCTION Abstract 1 Introduction and related work
An important and frequently used N . . . R
method of defining a programming language We bridge the gap between functional evaluators and abstract ma- In Hannan and Miller's words [23, Section 7], there are fundamen-
is to r the language chines for the X i formation f i ini initions of
c

, hopefully into

TFP (and TFPIE) 2025

26th International Symposium on Trends in Functional Programming
13th to 16th January 2025, Oxford, UK

Home CFP Schedule Register Attending TFPIE

The symposium on Trends in Functional Programming (TFP) is an international forum for researchers
with interests in all aspects of functional programming, taking a broad view of current and future
trends in the area. It aspires to be a lively environment for presenting the latest research results, and
other contributions. See the call for papers for more details.

In 2025, the event is taking place in person in the Department of Computer Science at the University

of Oxford. It will be a 4-day event, with TFPIE taking place on 13th January 2025, followed by TFP on
14th to 16th January.

TFP offers a friendly and constructive reviewing process designed to help less experienced authors
succeed, with an opportunity for two rounds of review, both before and after the symposium itself.
Authors thus have an opportunity to address reviewers' concerns before the final decision on
publication in the Proceedings is taken, in the light of previous reviews and discussions at the
symposium.

Omitted material

Implementing generalized composition

Really needs a dependent type, indexed by list of argument types:

Arrow : List Type - Type - Type

Arrow [] b=Db ?Id |
Arrow (a:as)b=a - Arrow as b I'lS

For example, at arity 2:
Arrow [Char, Bool] String = Char - Bool - String

Then defined by induction over the arity:

b:{as:List Type} - (b - ¢c) - Arrow asb - Arrow as c

b{as=[]} gf=gf
b{as=_:_}gf=bg-f

CPS etc

Exploiting generalized composition

Recall:
eval, e = eval; e id
eval,'(Litn) = Ak [k
eval, (Diff e e = Ak [Cevhl,'e (Am Cevhl; e ~An CK{Am — n)))

21

CPS etc

Exploiting generalized composition

Recall:

eval, e = eval, e halt
evaIZD(Lit n) =retn
[] - _ [1] []

eval, (Diff e e = Ak [Cevhl; e (A\m [evhl, e{An [sub k m n))
where for later convenience we introduce:

halt =id

ret n = Ak [Kkh

sub = Ak [Arh [K{m—n)

21

CPS etc

Exploiting generalized composition

Recall:

eval, e = eval, e halt
evaIZE'(Lit n) =retn
[] - _ [1] []
eval, (Diff e ey = Ak [Cevhl; e (Am [evhl, e{An [Csub k m n))
Then:

eval;, (Diff e e)
= |[definition]]
Ak [Cevhlye (\m Cevhl;'e~(An [sub k m n))
= [[since Ak CgA{f k) isb' g (Ak CIK&) T
bl (eval,'e) (A\k m [evhl, e(An [sub k m n))
= |[[sinceAkm Cgdf km)isb?g(Akm CIkm) T
bl (eval,e) (b2 (eval; e sub)

21

CPS etc

Installing generalized composition

Rewrite the Diff case of eval,:

evals : EXxpr - Integer

evals e = evaIEe halt where
eval5'j: Expr - (Integer - Integer) - Integer
evaIE(Lit n) =retn
eval (Diff e e = b? (evalse) (b2 (evalged sub)

22

Representation

evaIEis not tail-recursive any more; but suggests another representation:

data ExprRepg : List Type - Type where

Retg : Integer - ExprRepg []
Subg : EXprRepg [Integer, Integer |
Bi :ExprRepg [] - ExprRepg [Integer] - ExprRepg []

B :ExprRepg [] — ExprRepg [Integer, Integer] — ExprRepg [Integer]
obtained by defunctionalizing the evaluator:

repg : Expr - ExprRepg []
repg (Lit n) = Retg n
repg (Diff e e = B (repg €) (B (repg €Y Subsg)

Type index denotes what extra values are needed to complete evaluation.

Interpretation

Data of type ExprRepg r is a defunctionalized evaluation function of type
(Integer - Integer) - Arrow r Integer
Abstraction function refunctionalizes:

absg : EXprRepg r —» (Integer - Integer) - Arrow r Integer
absg (Retg n) =ret n

absg Subg = sub

absg (B x y) = b? (absg x) (abss y)

absg (B x y) = b? (absg x) (absg y)

CPS etc

Linear code

data ExprRep- : List Type - Type where

Halt; : ExprRep- [Integer]
BRet; : Integer - ExprRep-, (Integer ::r) - ExprRep-, r
BSub- : ExprRep- (Integer ::r) - ExprRep- (Integer :: Integer :: r)

supporting concatenation:

append- : ExprRep-, r - ExprRep- (Integer ::s) —» ExprRep- (r +S)
append- Halt; y =y

append- (BRet; n k) y = BRet; n (append- ky)

append- (BSuby k) y = BSub-; (append-; ky)

25

Representation and interpretation

Obtained by defunctionalizing the transformed interpreter:

rep- : EXxpr - ExprRep- []
rep, (Lit n) = BRet; n Halt;

rep, (Diff e e = append- (rep- e) (append- (rep- e (BSub; Halt;))

and interpreted like this:

abs; : ExprRep, r - Arrow r Integer
abs; Halt- = halt

abs; (BRet7 n k) =ret n (abs; k)
abs; (BSub; k) = flip (sub (abs; k)) -- note reversal of arguments again

