Mapping Features to Aspects

The Road from Crosscutting to Product Lines

(Work in Progress)

Roberto E. Lopez-Herrejon
Computing Laboratory
Oxford University

Motivation — Features

Feature
o Informally: A characteristic or prominent part of a product
o In SEng: An increment in program functionality

Features are the basis of software product lines

o Family of similar products

o Members are distinguished by the set of features they have
o Feature reuse, reduce time to market, customization

Motivation — Aspects

Aspects are a sophisticated technology to
modularize crosscutting concerns

o Involve several classes and interfaces

Aspectd is the most popular AOP language
o Typical applications: tracing, debugging, ...

Big Picture

How can aspects help implementing product lines?

Previous work

o Graph Product Line — Lopez-Herrejon 2002
o Middleware software — Coyler et al. 2004

o Evaluation of AOP to PL — Muthig et al. 2004

Limitations
o Small scale in loc and features
o Do not address composition issues

Our Approach
Functional composition (TOSEMO04)

o Key factor for product line generation
o Promotes feature reuse

Aspectd composition model (PEPMOG)
o Not simple functional composition
o Advice applies globally

Emulate functional composition in AspectJ

o Careful use of advice and pointcuts
o Case study — AHEAD tool suite

Feature Oriented Programming (FOP)

Has been used in the synthesis of large scale
product line programs

AHEAD tool suite

o Implementation of FOP

o Uses a Java language extension called Jak
o Is in itself a product line

a0 Supports definition of extensible DSLs

AHEAD — Composition

Base programs are constants
i // program with feature 1i
j // program with feature j

Program extensions / refinements are functions
k o x // adds feature k to program x
m e X // adds feature m to program x

Program designs are expressions
k o i // program with features i and k
m ek e // program with features m,k,]

Product line is the set of valid expressions

ReC

AHEAD — Composition

class D {

int v;

double k() { ... }
}

class A { class B {
double m; int x;
voidp(){s;t;} String g() {...}
} }
refinesctass A { class
boolb (){...} extension
void p()
Supw\ new method
} ;
} \‘ method extension
class A {
double m;
void p() { s; t; w; }
bool b() { ...}

}

Similarities and Differences

FOP and Aspectd ECOOPO05

a New fields

2 New methods and constructors

o Method and constructor extensions
o Aspects cannot add new classes

Composition model PEPMO6

o FOP is functional
o Aspectd is something else ...

Product Lines Example

class Point {
int x;

void setX(intv) { x = v; }

}

aspect AddY {
int Point.y;
void Point.setY(intv) {y =v; }

}

}

aspect AddPrint {
after (Point p) : execution(* Point.set*(..)) { print ("Hi"); }

aspect AddColor {
int Point.color = 0;

int Point.setColor(int c) { color = c; }

}

How many products can be created?

10

‘ Assuming Functional Composition

class Point {
int x; void setX(int v) { x = v; print(“‘Hi"); }
int y; void setY(int v) { y = v; print(“Hi"); }
int color = 0; void setColor(int ¢) { color = c; print(“"Hi"); }

}

AddPrint e AddColor ¢ AddY e Point

We can generate 3 different products

11

In Reality ...

class Point {
int x; void setX(int v) { x = v; print(“Hi"); }
int y; void setY(int v) { y = v; print(“Hi"); }
int color = 0; void setColor(int c) { color = c; print(“"Hi"); }

}

AddPrint © AddColor ¢ AddY ¢ Point
D

(0
AspectJ needs 3 versions
of AddPrint

Emulating Functional Composition

For AHEAD Features

Translating Jak to Aspect]

AHEAD features

2 Add new fields and methods
o Extend methods
o Impose composition order
Jak aspectj

> jak2aj >

Translation of Base Code

Standard classes are mapped without any changes

layer base;
class Quadrilateral {

Point p1, p2, p3, p4;

void draw() {.. std lines ..}
;

>Jak2aj>

class Quadrilateral {

Point pl1, p2, p3, p4;

void draw() {.. std lines ..}
;

Standard interfaces are translated similarly

15

New Fields and Methods

Translated to field and method introductions

access private
members

layer style;

refines class Quadrilateral {
int font;
void setFont(int f) {..}

precedence
pattern

privileged aspect style_/QuadriIateraI {
int Quadrilateral. font;
void Quadrilateral. setFont(int f) {..}

16

Method Extensions — GGeneral Case

layer color;
refines class Rectangle { A method
void draw() { o extends the method of previous
repaint(); features
Super.draw(); o references extended method
} Translation
) o around advice
o proceed calls replace Super calls
o class members referenced through
target object

privileged aspect color_Rectangle{
void around(Rectangle obj$Rectangle) :
call(void *.draw()) && target(Rectangle) &&
target(obj$Rectangle) {
obj$Rectangle.repaint();
proceed(obj$Rectangle);

}

17

Why all these many cases?

Four different cases for method extension

In AspectJ

o Asymmetrical approach to overriding

Precedence determines overriding relations in new aspects,
but does not allow overriding of base code

2 No notion of method extension
mimicked with around advice

In AHEAD

o Overloaded meaning of Super
Standard inheritance overriding and use of super
Method extensions

18

In Retrospective ...

How functional composition was achieved?
o Disciplined use of subset of AspectJ

AHEAD AspectJ
Add fields and methods =» Introductions
Extend methods =» Around advice

=» Join points of a single type
=» Method calls (target, args)

Impose composition =» Precedence clauses
order

19

AHEAD Product Line Statistics

Tools: 5 Num Features: 48 LOC: 205K+

Java AspectJ
NumFiles 524 9503
LOC 38300 18427
LOC

32% ®mJava
@ AspectJ

68%

AHEAD Product Line Statistics

Java Advice

Fields 1006 58 0

Constructors 40 0 0
Methods 2238 774 16

2500+

2000+

1500+

1000+

500

0_

Field Cons Method

M Java O Introd B Advice

Conclusions

Aspects can be used to implement product lines
o Significant size 200K+ LOC

Conditions

o Emulate functional composition

o Using modest subset of AspectJ

o Careful use of precedence and advice

22

Current Work

Complete AHEAD tool translation and statistics

AHEAD is based on an algebraic composition model
o Program transformations are the central mathematical concept

o We have developed a basis of an algebraic structural model that
unifies aspects and features PEPM 06

Open questions ...
o Can other AOP capability be added to this model?
o Can functional composition be implemented on full AspectJ?

23

Reterences

Roberto E. Lopez-Herrejon and Don Batory. Mapping Features to
Aspects: An Experience Report. In preparation.

Roberto E. Lopez-Herrejon, Don Batory, and Christian Lengauer.
A disciplined approach to aspect composition. PEPM, 2006.

Roberto E. Lopez-Herrejon, Don Batory, and William Cook.
Evaluating support for features in advanced modularization
technologies. ECOOP 2005.

D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. IEEE Transactions on Software Engineering (IEEE
TSE), June 2004.

24

