Publications:Semantic Mapping in Warehouses
"Åstrand, Björn (bjorn), Associate Professor (Högskolan i Halmstad (2804), Akademin för informationsteknologi (16904), Halmstad Embedded and Intelligent Systems Research (EIS) (3938), ;;CAISR Centrum för tillämpade intelligenta system (IS-lab) (13650))Philippsen, Roland (rolphi), Assistant Professor (Högskolan i Halmstad (2804), Akademin för informationsteknologi (16904), Halmstad Embedded and Intelligent Systems Research (EIS) (3938), ;;CAISR Centrum för tillämpade intelligenta system (IS-lab) (13650))Verikas, Antanas (av), Professor (Högskolan i Halmstad (2804), Akademin för informationsteknologi (16904), Halmstad Embedded and Intelligent Systems Research (EIS) (3938), ;;CAISR Centrum för tillämpade intelligenta system (IS-lab) (13650))" cannot be used as a page name in this wiki.
Title | Semantic Mapping in Warehouses |
---|---|
Author | Saeed Gholami Shahbandi |
Year | 2016 |
PublicationType | Licentiate Thesis |
Journal | |
HostPublication | |
Conference | |
DOI | |
Diva url | http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:1033695 |
Abstract | This thesis and appended papers present the process of tacking the problem of environment modeling for autonomous agent. More specifically, the focus of the work has been semantic mapping of warehouses. A semantic map for such purpose is expected to be layout-like and support semantics of both open spaces and infrastructure of the environment. The representation of the semantic map is required to be understandable by all involved agents (humans, AGVs and WMS.) And the process of semantic mapping is desired to lean toward full-autonomy, with minimum input requirement from human user. To that end, we studied the problem of semantic annotation over two kinds of spatial map from different modalities. We identified properties, structure, and challenges of the problem. And we have developed representations and accompanied methods, while meeting the set criteria. The overall objective of the work is “to develop and construct a layer of abstraction (models and/or decomposition) for structuring and facilitate access to salient information in the sensory data. This layer of abstraction connects high level concepts to low-level sensory pattern.” Relying on modeling and decomposition of sensory data, we present our work on abstract representation for two modalities (laser scanner and camera) in three appended papers. Feasibility and the performance of the proposed methods are evaluated over data from real warehouse. The thesis conclude with summarizing the presented technical details, and drawing the outline for future work. |