References
|
Li, Z., Zhu, Y., & Van Leeuwen, M. (20 … Li, Z., Zhu, Y., & Van Leeuwen, M. (2023). A survey on explainable anomaly detection. ACM Transactions on Knowledge Discovery from Data, 18(1), 1-54.
Jacob, V., Song, F., Stiegler, A., Rad, B., Diao, Y., & Tatbul, N. (2020). Exathlon: A benchmark for explainable anomaly detection over time series. arXiv preprint arXiv:2010.05073.
Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., & Zhang, A. (2021). A survey on causal inference. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(5), 1-46.
Chatterjee, J., & Dethlefs, N. (2020, September). Temporal causal inference in wind turbine scada data using deep learning for explainable AI. In Journal of Physics: Conference Series (Vol. 1618, No. 2, p. 022022). IOP Publishing.
Liu, Y., Ding, K., Lu, Q., Li, F., Zhang, L. Y., & Pan, S. (2024). Towards self-interpretable graph-level anomaly detection. Advances in Neural Information Processing Systems, 36.
Deng, A., & Hooi, B. (2021, May). Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 5, pp. 4027-4035).
Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q. Z., ... & Akoglu, L. (2021). A comprehensive survey on graph anomaly detection with deep learning. IEEE Transactions on Knowledge and Data Engineering, 35(12), 12012-12038.
Rad, B., Song, F., Jacob, V., & Diao, Y. (2021, June). Explainable anomaly detection on high-dimensional time series data. In Proceedings of the 15th ACM International Conference on Distributed and Event-based Systems (pp. 2-14).ibuted and Event-based Systems (pp. 2-14).
|