Browse wiki

From ISLAB/CAISR
Resolving Class Imbalance using Generative Adversarial Networks
Keywords GAN, neural networks, deep learning  +
Level Master  +
OneLineSummary Resolving Class Imbalance using Generative Adversarial Networks  +
Prerequisites Artificial Intelligence and Learning Systems courses; good knowledge of machine learning and neural networks; python programming skills for implementing machine learning algorithms.  +
References NIPS 2016 Tutorial on GANs https://arxiv.oNIPS 2016 Tutorial on GANs https://arxiv.org/pdf/1701.00160.pdf Effective data generation for imbalanced learning using Conditional Generative Adversarial Networks https://www.researchgate.net/publication/319672232_Effective_data_generation_for_imbalanced_learning_using_Conditional_Generative_Adversarial_Networks BAGAN: Data Augmentation with Balancing GAN https://arxiv.org/abs/1803.09655 InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets https://arxiv.org/pdf/1606.03657.pdf Nets https://arxiv.org/pdf/1606.03657.pdf
StudentProjectStatus Open  +
Supervisors Sepideh Pashami + , Peter Berck +
TimeFrame Winter 2018, Spring 2019  +
Title Resolving Class Imbalance using Generative Adversarial Networks  +
Categories StudentProject  +
Modification dateThis property is a special property in this wiki. 11 October 2018 09:06:44  +
hide properties that link here 
  No properties link to this page.
 

 

Enter the name of the page to start browsing from.