Difference between revisions of "Publications:Feature Selection with Neural Networks"

From ISLAB/CAISR
(Created page with "<div style='display: none'> == Do not edit this section == </div> {{PublicationSetupTemplate|Author=Antanas Verikas, Marija Bacauskiene |PID=235620 |Name=Verikas, Antanas [av]...")
 
 
Line 4: Line 4:
 
{{PublicationSetupTemplate|Author=Antanas Verikas, Marija Bacauskiene
 
{{PublicationSetupTemplate|Author=Antanas Verikas, Marija Bacauskiene
 
|PID=235620
 
|PID=235620
|Name=Verikas, Antanas [av] (Högskolan i Halmstad [2804], Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE) [3905], Halmstad Embedded and Intelligent Systems Research (EIS) [3938]);Bacauskiene, Marija (Department of Applied Electronics, Kaunas University of Technology, LT-3031, Kaunas, Lithuania)
+
|Name=Verikas, Antanas (av) (0000-0003-2185-8973) (Högskolan i Halmstad (2804), Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE) (3905), Halmstad Embedded and Intelligent Systems Research (EIS) (3938));Bacauskiene, Marija (Department of Applied Electronics, Kaunas University of Technology, LT-3031, Kaunas, Lithuania)
 
|Title=Feature Selection with Neural Networks
 
|Title=Feature Selection with Neural Networks
 
|PublicationType=Journal Paper
 
|PublicationType=Journal Paper
Line 55: Line 55:
 
|CreatedDate=2009-09-17
 
|CreatedDate=2009-09-17
 
|PublicationDate=2009-09-17
 
|PublicationDate=2009-09-17
|LastUpdated=2013-06-14
+
|LastUpdated=2014-11-10
 
|diva=http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:235620}}
 
|diva=http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:235620}}
 
<div style='display: none'>
 
<div style='display: none'>

Latest revision as of 21:39, 30 September 2016

Do not edit this section

Keep all hand-made modifications below

Title Feature Selection with Neural Networks
Author Antanas Verikas and Marija Bacauskiene
Year 2002
PublicationType Journal Paper
Journal Pattern Recognition Letters
HostPublication
Conference
DOI http://dx.doi.org/10.1016/S0167-8655(02)00081-8
Diva url http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:235620
Abstract We present a neural network based approach for identifying salient features for classification in feedforward neural networks. Our approach involves neural network training with an augmented cross-entropy error function. The augmented error function forces the neural network to keep low derivatives of the transfer functions of neurons when learning a classification task. Such an approach reduces output sensitivity to the input changes. Feature selection is based on the reaction of the cross-validation data set classification error due to the removal of the individual features. We demonstrate the usefulness of the proposed approach on one artificial and three real-world classification problems. We compared the approach with five other feature selection methods, each of which banks on a different concept. The algorithm developed outperformed the other methods by achieving higher classification accuracy on all the problems tested.