Difference between revisions of "Publications:Leverages Based Neural Networks Fusion"
From ISLAB/CAISR
(Created page with "<div style='display: none'> == Do not edit this section == </div> {{PublicationSetupTemplate|Author=Antanas Verikas, Marija Bacauskiene, Adas Gelzinis |PID=300225 |Name=Verika...") |
|||
Line 4: | Line 4: | ||
{{PublicationSetupTemplate|Author=Antanas Verikas, Marija Bacauskiene, Adas Gelzinis | {{PublicationSetupTemplate|Author=Antanas Verikas, Marija Bacauskiene, Adas Gelzinis | ||
|PID=300225 | |PID=300225 | ||
− | |Name=Verikas, Antanas | + | |Name=Verikas, Antanas (av) (0000-0003-2185-8973) (Högskolan i Halmstad (2804), Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE) (3905), Halmstad Embedded and Intelligent Systems Research (EIS) (3938));Bacauskiene, Marija (Kaunas University of Technology, Lithuania);Gelzinis, Adas (Kaunas University of Technology, Lithuania) |
|Title=Leverages Based Neural Networks Fusion | |Title=Leverages Based Neural Networks Fusion | ||
|PublicationType=Conference Paper | |PublicationType=Conference Paper | ||
Line 55: | Line 55: | ||
|CreatedDate=2009-12-01 | |CreatedDate=2009-12-01 | ||
|PublicationDate=2010-02-25 | |PublicationDate=2010-02-25 | ||
− | |LastUpdated= | + | |LastUpdated=2014-11-10 |
|diva=http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:300225}} | |diva=http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:300225}} | ||
<div style='display: none'> | <div style='display: none'> |
Latest revision as of 21:40, 30 September 2016
Title | Leverages Based Neural Networks Fusion |
---|---|
Author | Antanas Verikas and Marija Bacauskiene and Adas Gelzinis |
Year | 2004 |
PublicationType | Conference Paper |
Journal | |
HostPublication | Neural information processing |
Conference | 11th International Conference, ICONIP 2004, Calcutta |
DOI | http://dx.doi.org/10.1007/978-3-540-30499-9_68 |
Diva url | http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:300225 |
Abstract | To improve estimation results, outputs of multiple neural networks can be aggregated into a committee output. In this paper, we study the usefulness of the leverages based information for creating accurate neural network committees. Based on the approximate leave-one-out error and the suggested, generalization error based, diversity test, accurate and diverse networks are selected and fused into a committee using data dependent aggregation weights. Four data dependent aggregation schemes – based on local variance, covariance, Choquet integral, and the generalized Choquet integral – are investigated. The effectiveness of the approaches is tested on one artificial and three real world data sets. |