You do not have permission to edit this page, for the following reason:
The action you have requested is limited to users in the group: Users.
Lower case title of project:
Add related partners:
Free text:
__NOTOC__ {{ShowResearchProject}} ==Motivation== Autonomous Cooperative Driving can increase traffic safety, reduce fuel consumption, and lead to more efficient road use and the possibility of driverless vehicles in certain environments. ==Goal== To support autonomous cooperative driving with dependable wireless real-time communications ==Two Main Application Scenarios== # Platooning (road trains), including special cases like joining in the middle of the platoon to arrange for best fuel saving # Fully autonomous driving in a restricted area like a construction site, a harbor, or a mine ==Main Research Questions== * How can wireless communication enable/enhance autonomous cooperative driving and what application requirements on the communication will there exist in such applications? * How can we design and configure communication protocols and methods to fulfill the requirements on dependable wireless real-time communications? ==Publications== ===Real-time medium access and reliability strategies=== A. Böhm, M. Jonsson, K. Kunert and A. Vinel, "Context-Aware Retransmission Scheme for Increased Reliability in Platooning Applications", Proc. Nets4Cars/Nets4Trains-2014, Springer LNCS 8435, Offenburg, Germany, May 2014. C. Campolo, A. Molinaro, A. Vinel and Y. Zhang, "Modeling Event-Driven Safety Messages Delivery in IEEE 802.11p/WAVE Vehicular Networks", IEEE Communications Letters, vol.17, no.12, pp.2392-2395, December 2013. A. Böhm, M. Jonsson, and E. Uhlemann, "Co-existing periodic beaconing and hazard warnings in IEEE 802.11p-based platooning applications", Proc. 10th ACM International Workshop on VehiculAr Inter-NETworking, Systems, and Applications (ACM VANET 2013), Taipei, Taiwan, June 2013. M. Jonsson, K. Kunert, and A. Böhm, "Increased communication reliability for delay-sensitive platooning applications on top of IEEE 802.11p", Proc. Nets4Cars/Nets4Trains-2013, Springer LNCS 7865, Lille, France, May 2013. ===Misbehavior detection and mitigation=== N. Lyamin, A. Vinel, M. Jonsson, and J. Loo, "Real-Time Detection of Denial-of-Service Attacks in IEEE 802.11p Vehicular Networks", IEEE Communications Letters, vol.18, no.1, pp.110-113, January 2014. ===Video transmission=== E. Belyaev, A. Vinel, M. Jonsson, and K. Sjoberg, "Live Video Streaming in IEEE 802.11p Vehicular Networks: Demonstration of an Automotive Surveillance Application", Proc. IEEE INFOCOM 2014 - Demo/Poster Session, Toronto, Canada, May 2014. A. Vinel, E. Belyaev, B. Bellalta, and H. Hu, "Live Video Streaming in Vehicular Networks", Proc. Nets4Cars/Nets4Trains-2014, Springer LNCS 8435, Offenburg, Germany, May 2014. B. Bellalta, E. Belyaev, M. Jonsson, and A. Vinel, "Performance Evaluation of IEEE 802.11p-Enabled Vehicular Video Surveillance System", IEEE Communications Letters, vol.18, no.4, pp.708-711, April 2014. A. Vinel, E. Belyaev, O. Lamotte, M. Gabbouj, Y. Koucheryavy, and K. Egiazarian, "Video transmission over IEEE 802.11p: real-world measurements", Proc. IEEE ICC 2013 - Workshop on Emerging Vehicular Networks: V2V/V2I and Railroad Communications, Budapest, Hungary, June 2013.
Summary:
This is a minor edit Watch this page
Cancel
Home
Research
Education
Partners
People
Contact